Abstract

We propose a simple and high-performance scheme for demultiplexing coherent Nyquist TDM signals by photo-mixing on a photo-detector with Nyquist LO pulses. This scheme takes advantage of the time-domain orthogonality of Nyquist pulses, which enables high-SNR demultiplexing and homodyne detection simultaneously in spite of a strong overlap with adjacent pulses in the time domain. The feasibility of this scheme is demonstrated through a demultiplexing experiment employing 80 Gbaud, 64 QAM Nyquist pulse OTDM signals. This scheme exhibits excellent demultiplexing performance with a much simpler configuration than a conventional ultrafast all-optical sampling scheme.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train

Masataka Nakazawa, Toshihiko Hirooka, Peng Ruan, and Pengyu Guan
Opt. Express 20(2) 1129-1140 (2012)

Single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz

David Odeke Otuya, Keisuke Kasai, Masato Yoshida, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 22(20) 23776-23785 (2014)

320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT

H. Hu, D. Kong, E. Palushani, M. Galili, H. C. H. Mulvad, and L. K. Oxenløwe
Opt. Express 22(1) 110-118 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” Proceedings of the Optical Fiber Communication Conference (OFC)2011, PDPA9.
    [Crossref]
  2. E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” Proceedings of the European Conference on Optical Communication (ECOC)2011, We.8.B.5.
    [Crossref]
  3. D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express 21(19), 22808–22816 (2013).
    [Crossref] [PubMed]
  4. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  5. K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, “640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,” Opt. Express 21(18), 21062–21075 (2013).
    [Crossref] [PubMed]
  6. D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,” Proceedings of the Optical Fiber Conference (OFC)2014, W1A.4.
    [Crossref]
  7. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” Proceedings of the Conference on Lasers and Electro-Optics (CLEO) 2013, CTh5D.5.
    [Crossref]
  8. T. Richter, M. Nölle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16 QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
    [Crossref]
  9. J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
    [Crossref] [PubMed]
  10. F. Ito, “Interferometry demultiplexing experiment using linear coherent correlation with modulated local oscillator,” Electron. Lett. 32(1), 14–15 (1996).
    [Crossref]
  11. C. Zhang, Y. Mori, K. Igarashi, K. Katoh, and K. Kikuchi, “Ultrafast operation of digital coherent receivers using their time-division demultiplexing function,” J. Lightwave Technol. 27(3), 224–232 (2009).
    [Crossref]
  12. M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express 19(26), B574–B580 (2011).
    [Crossref] [PubMed]
  13. G. Baxter, S. Frisken, D. Abakoumov, H. Z. I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” Proceedings of OFC/NFOEC2006, OTuF2, 2006.
    [Crossref]

2014 (2)

T. Richter, M. Nölle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16 QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (1)

2009 (1)

1996 (1)

F. Ito, “Interferometry demultiplexing experiment using linear coherent correlation with modulated local oscillator,” Electron. Lett. 32(1), 14–15 (1996).
[Crossref]

Chi, N.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Fang, Y.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Frey, F.

T. Richter, M. Nölle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16 QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

Guan, P.

Harako, K.

Hirooka, T.

Igarashi, K.

Ito, F.

F. Ito, “Interferometry demultiplexing experiment using linear coherent correlation with modulated local oscillator,” Electron. Lett. 32(1), 14–15 (1996).
[Crossref]

Kasai, K.

Katoh, K.

Kikuchi, K.

Ludwig, R.

E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” Proceedings of the European Conference on Optical Communication (ECOC)2011, We.8.B.5.
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” Proceedings of the Optical Fiber Communication Conference (OFC)2011, PDPA9.
[Crossref]

Mori, Y.

Nakazawa, M.

Nölle, M.

T. Richter, M. Nölle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16 QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” Proceedings of the Optical Fiber Communication Conference (OFC)2011, PDPA9.
[Crossref]

E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” Proceedings of the European Conference on Optical Communication (ECOC)2011, We.8.B.5.
[Crossref]

Otuya, D. O.

D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express 21(19), 22808–22816 (2013).
[Crossref] [PubMed]

D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,” Proceedings of the Optical Fiber Conference (OFC)2014, W1A.4.
[Crossref]

Palushani, E.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” Proceedings of the Optical Fiber Communication Conference (OFC)2011, PDPA9.
[Crossref]

E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” Proceedings of the European Conference on Optical Communication (ECOC)2011, We.8.B.5.
[Crossref]

Richter, T.

T. Richter, M. Nölle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16 QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” Proceedings of the Optical Fiber Communication Conference (OFC)2011, PDPA9.
[Crossref]

E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” Proceedings of the European Conference on Optical Communication (ECOC)2011, We.8.B.5.
[Crossref]

Ruan, P.

Schmidt-Langhorst, C.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” Proceedings of the Optical Fiber Communication Conference (OFC)2011, PDPA9.
[Crossref]

E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” Proceedings of the European Conference on Optical Communication (ECOC)2011, We.8.B.5.
[Crossref]

Schubert, C.

T. Richter, M. Nölle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16 QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” Proceedings of the Optical Fiber Communication Conference (OFC)2011, PDPA9.
[Crossref]

E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” Proceedings of the European Conference on Optical Communication (ECOC)2011, We.8.B.5.
[Crossref]

Seya, D.

Yoshida, M.

Yu, J.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Zhang, C.

Zhang, J.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Electron. Lett. (1)

F. Ito, “Interferometry demultiplexing experiment using linear coherent correlation with modulated local oscillator,” Electron. Lett. 32(1), 14–15 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Richter, M. Nölle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16 QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Sci. Rep. (1)

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Other (5)

G. Baxter, S. Frisken, D. Abakoumov, H. Z. I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” Proceedings of OFC/NFOEC2006, OTuF2, 2006.
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” Proceedings of the Optical Fiber Communication Conference (OFC)2011, PDPA9.
[Crossref]

E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” Proceedings of the European Conference on Optical Communication (ECOC)2011, We.8.B.5.
[Crossref]

D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,” Proceedings of the Optical Fiber Conference (OFC)2014, W1A.4.
[Crossref]

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” Proceedings of the Conference on Lasers and Electro-Optics (CLEO) 2013, CTh5D.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Basic configuration of TDM demultiplexing using Nyquist LO pulses.
Fig. 2
Fig. 2 Overlap integral of Nyquist pulses when α = 0.5.
Fig. 3
Fig. 3 Overlap integral of Nyquist pluses for each roll-off factors when m−n = 0 and 1.
Fig. 4
Fig. 4 Experimental setup for 80 Gbaud, 64 QAM coherent Nyquist TDM demultiplexing using a Nyquist LO pulse (a) and an ultrafast NOLM sampling gate (b). The present scheme (a) is much simpler than the previous scheme (b).
Fig. 5
Fig. 5 Optical spectra of Nyquist pulses generated with α = 0 (a), 0.5 (b), and 1 (c). The black curves show the ideal Nyquist spectral profile.
Fig. 6
Fig. 6 Constellations of a 64 QAM Nyquist pulse with α = 0 received with the proposed scheme (a) and the previous ultrafast sampling scheme (b), respectively.
Fig. 7
Fig. 7 Constellations of a 64 QAM Nyquist pulse with α = 0.5 received with the proposed scheme (a) and the previous ultrafast sampling scheme (b), respectively.
Fig. 8
Fig. 8 Back-to-back BER vs. OSNR for demultiplexed 10 Gbaud 64 QAM Nyquist pulses with α = 0 (squares), 0.5 (diamonds) and 1 (circles).
Fig. 9
Fig. 9 Theoretical BER curves of 64 QAM signals as a function of OSNR with SE = 6 bit/s/Hz (α = 0, blue), SE = 4 bit/s/Hz (α = 0.5, red) and SE = 3 bit/s/Hz (α = 1, black) (a), and the relationship between the roll-off factor and spectral efficiency for 64 QAM (b).
Fig. 10
Fig. 10 BERs for all the tributaries of the demultiplexed 10 Gbaud 64 QAM Nyquist pulses with the Nyquist LO scheme (α = 0, OSNR = 25 dB).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

u(t)=g(t)= n g n ϕ n (t)
1 T ϕ n (t) ϕ m (t)dt ={ 0(nm) 1(n=m)
g n = 1 T u(t) ϕ n (t)dt
E 1 = 1 2 [ u(t)+ ϕ n (t) ], E 2 = 1 2 [ u(t) ϕ n (t) ],
I(t)= | E 1 | 2 | E 2 | 2 =u(t) ϕ n (t)
I out (t)= 1 2π I ˜ (ω)H (ω) e jωt dω
I ˜ (ω)= I( t ) e jω t d t
I out (t)= 1 2π ( I( t ) e jω t d t )H (ω) e jωt dω = 1 2π I( t ) H(ω) e jω( t t) dωd t
I out (t)= 1 2π I( t ) 0 Ω e jω( t t) dωd t = 1 2π I( t ) e jΩ( t t) 1 j( t t) d t 1 2π I( t ) [ 1+jΩ( t t) ]1 j( t t) d t = Ω 2π I( t ) d t
I out (t)= 1 T u(t) ϕ n (t)dt
1 T ϕ n (t) ϕ m (t)dt= 3 8 (1+α)sinc[ π(1+α)(mn) ]+ 5 8 (1α)sinc[ π(1α)(mn) ] α 8 cos[ π(mn) ]{ sinc[ π(1+α(mn)) ]+sinc[ π(1α(mn)) ] }

Metrics