Abstract

We report on quadrature demultiplexing of a quadrature phase-shift keying (QPSK) signal into two cross-polarized binary phase-shift keying (BPSK) signals with negligible penalty at bit-error rate (BER) equal to 10−9. The all-optical quadrature demultiplexing is achieved using a degenerate vector parametric amplifier operating in phase-insensitive mode. We also propose and demonstrate the use of a novel and simple phase-locked loop (PLL) scheme based on detecting the envelope of one of the signals after demultiplexing in order to achieve stable quadrature decomposition.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber

Francesco Da Ros, Kjeld Dalgaard, Lei Lei, Jing Xu, and Christophe Peucheret
Opt. Express 21(23) 28743-28750 (2013)

Experimental analysis of degenerate vector phase-sensitive amplification

Abel Lorences-Riesgo, Fabrizio Chiarello, Carl Lundström, Magnus Karlsson, and Peter A. Andrekson
Opt. Express 22(18) 21889-21902 (2014)

All-optical two-channel polarization-multiplexing format conversion from QPSK to BPSK signals in a silicon waveguide

Xianglian Feng, Zhihang Wu, Xiaoyan Wang, Sailing He, and Shiming Gao
Photon. Res. 4(6) 245-248 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
    [Crossref]
  2. T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.2.
  3. B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.1.
  4. S. L. Olsson, T. A. Eriksson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Linear and nonlinear transmission of 16-QAM over 105 km phase-sensitive amplified link,” in Optical Fiber Communication Conference (OFC 2014), paper Th1H.3.
  5. Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281, 2755– 2759 (2008).
    [Crossref]
  6. R. P. Webb, J. M. Dailey, R. J. Manning, and A. D. Ellis, “Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA,” Opt. Express 19, 20015–20022 (2011).
    [Crossref] [PubMed]
  7. F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
    [Crossref]
  8. F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
    [Crossref]
  9. M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Low-penalty phase de-multiplexing of QPSK signal by dual-pump phase sensitive amplifiers,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.5.
  10. R. P. Webb, M. Power, and R. J. Manning, “Phase-sensitive frequency conversion of quadrature modulated signals,” Opt. Express 21, 12713–12727 (2013).
    [Crossref] [PubMed]
  11. F. Lorences-Riesgo, F. Chiarello, C. Lundström, M. Karlsson, and P. A. Andrekson, “Experimental analysis of degenerate vector phase-sensitive amplification,” Opt. Express 22, 21889–21902 (2014).
    [Crossref] [PubMed]
  12. N. K. Kjller, M. Galili, K. Dalgaard, H.-C. Mulvad, K. Røge, and L.-K. Oxenløwe, “Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.
  13. F. Parmigiani, R. Slavík, G. Hesketh, P. Petropoulos, and D. J. Richardson, “Quadrature Decomposition of Optical Fields using two Orthogonal Phase Sensitive Amplifiers,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.8.
  14. C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).
    [Crossref] [PubMed]
  15. F. Parmigiani, G. Hesketh, R. Slavik, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shifts,” IEEE Photon. Technol. Lett. 26, 2146–2149 (2014).
    [Crossref]
  16. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
    [Crossref]
  17. M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Phase comparator using phase sensitive amplifier for phase noise-tolerant carrier phase recovery of QPSK signals,” in 18th OptoElectronics and Communications Conference (OECC 2013) held jointly with 2013 International Conference on Photonics in Switching, paper TuS2-4.
  18. C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
    [Crossref]
  19. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19, 7734–7741 (2011).
    [Crossref] [PubMed]
  20. V. Ataie, E. Temprana, N. Alic, and S. Radic, “Demonstration of Local-Oscillator Phase-Noise Tolerant 40 GBaud/s Coherent Transmitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.
  21. J. Proakis and M. Salehi, Digital Communications, McGraw-Hill higher education (McGraw-Hill Education, 2007).
  22. L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.
  23. B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wide-band parametric mixer synthesis,” Opt. Express 20, 18611–18619 (2012).
    [Crossref] [PubMed]
  24. M.-C. Ho, M. Marhic, K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20, 469–476 (2002).
    [Crossref]

2014 (3)

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

F. Lorences-Riesgo, F. Chiarello, C. Lundström, M. Karlsson, and P. A. Andrekson, “Experimental analysis of degenerate vector phase-sensitive amplification,” Opt. Express 22, 21889–21902 (2014).
[Crossref] [PubMed]

F. Parmigiani, G. Hesketh, R. Slavik, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shifts,” IEEE Photon. Technol. Lett. 26, 2146–2149 (2014).
[Crossref]

2013 (4)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
[Crossref]

R. P. Webb, M. Power, and R. J. Manning, “Phase-sensitive frequency conversion of quadrature modulated signals,” Opt. Express 21, 12713–12727 (2013).
[Crossref] [PubMed]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
[Crossref]

2012 (1)

2011 (3)

2008 (1)

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281, 2755– 2759 (2008).
[Crossref]

2004 (1)

2002 (1)

Agrell, E.

Alic, N.

V. Ataie, E. Temprana, N. Alic, and S. Radic, “Demonstration of Local-Oscillator Phase-Noise Tolerant 40 GBaud/s Coherent Transmitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

An, L.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281, 2755– 2759 (2008).
[Crossref]

Andrekson, P. A.

F. Lorences-Riesgo, F. Chiarello, C. Lundström, M. Karlsson, and P. A. Andrekson, “Experimental analysis of degenerate vector phase-sensitive amplification,” Opt. Express 22, 21889–21902 (2014).
[Crossref] [PubMed]

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
[Crossref]

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19, 7734–7741 (2011).
[Crossref] [PubMed]

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

S. L. Olsson, T. A. Eriksson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Linear and nonlinear transmission of 16-QAM over 105 km phase-sensitive amplified link,” in Optical Fiber Communication Conference (OFC 2014), paper Th1H.3.

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.1.

Ataie, V.

V. Ataie, E. Temprana, N. Alic, and S. Radic, “Demonstration of Local-Oscillator Phase-Noise Tolerant 40 GBaud/s Coherent Transmitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

Bogris, A.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

Chandrasekhar, S.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Chiarello, F.

Chraplyvy, A. R.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Corcoran, B.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
[Crossref]

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.1.

Da Ros, F.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
[Crossref]

Dailey, J. M.

Dalgaard, K.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
[Crossref]

N. K. Kjller, M. Galili, K. Dalgaard, H.-C. Mulvad, K. Røge, and L.-K. Oxenløwe, “Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

Dasgupta, S.

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

Ellis, A. D.

Elschner, R.

T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.2.

Eriksson, T. A.

S. L. Olsson, T. A. Eriksson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Linear and nonlinear transmission of 16-QAM over 105 km phase-sensitive amplified link,” in Optical Fiber Communication Conference (OFC 2014), paper Th1H.3.

Fini, J. M.

Fukuchi, Y.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

Galili, M.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

N. K. Kjller, M. Galili, K. Dalgaard, H.-C. Mulvad, K. Røge, and L.-K. Oxenløwe, “Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

Gao, M.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Low-penalty phase de-multiplexing of QPSK signal by dual-pump phase sensitive amplifiers,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.5.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Phase comparator using phase sensitive amplifier for phase noise-tolerant carrier phase recovery of QPSK signals,” in 18th OptoElectronics and Communications Conference (OECC 2013) held jointly with 2013 International Conference on Photonics in Switching, paper TuS2-4.

Gruner-Nielsen, L.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
[Crossref]

Grüner-Nielsen, L.

B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wide-band parametric mixer synthesis,” Opt. Express 20, 18611–18619 (2012).
[Crossref] [PubMed]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

Herstrm, S.

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

Hesketh, G.

F. Parmigiani, G. Hesketh, R. Slavik, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shifts,” IEEE Photon. Technol. Lett. 26, 2146–2149 (2014).
[Crossref]

F. Parmigiani, R. Slavík, G. Hesketh, P. Petropoulos, and D. J. Richardson, “Quadrature Decomposition of Optical Fields using two Orthogonal Phase Sensitive Amplifiers,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.8.

Ho, M.-C.

Horak, P.

F. Parmigiani, G. Hesketh, R. Slavik, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shifts,” IEEE Photon. Technol. Lett. 26, 2146–2149 (2014).
[Crossref]

Inoue, T.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Low-penalty phase de-multiplexing of QPSK signal by dual-pump phase sensitive amplifiers,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.5.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Phase comparator using phase sensitive amplifier for phase noise-tolerant carrier phase recovery of QPSK signals,” in 18th OptoElectronics and Communications Conference (OECC 2013) held jointly with 2013 International Conference on Photonics in Switching, paper TuS2-4.

Jakobsen, D.

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

Johannisson, P.

Kakande, J.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

Karlsson, M.

F. Lorences-Riesgo, F. Chiarello, C. Lundström, M. Karlsson, and P. A. Andrekson, “Experimental analysis of degenerate vector phase-sensitive amplification,” Opt. Express 22, 21889–21902 (2014).
[Crossref] [PubMed]

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
[Crossref]

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19, 7734–7741 (2011).
[Crossref] [PubMed]

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.1.

S. L. Olsson, T. A. Eriksson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Linear and nonlinear transmission of 16-QAM over 105 km phase-sensitive amplified link,” in Optical Fiber Communication Conference (OFC 2014), paper Th1H.3.

Kazovsky, L. G.

Kjller, N. K.

N. K. Kjller, M. Galili, K. Dalgaard, H.-C. Mulvad, K. Røge, and L.-K. Oxenløwe, “Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

Kuo, B. P.-P.

Kurosu, T.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Low-penalty phase de-multiplexing of QPSK signal by dual-pump phase sensitive amplifiers,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.5.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Phase comparator using phase sensitive amplifier for phase noise-tolerant carrier phase recovery of QPSK signals,” in 18th OptoElectronics and Communications Conference (OECC 2013) held jointly with 2013 International Conference on Photonics in Switching, paper TuS2-4.

Lei, L.

Li, Z.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281, 2755– 2759 (2008).
[Crossref]

Liu, X.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281, 2755– 2759 (2008).
[Crossref]

Lorences-Riesgo, F.

Lundstrom, C.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
[Crossref]

Lundström, C.

F. Lorences-Riesgo, F. Chiarello, C. Lundström, M. Karlsson, and P. A. Andrekson, “Experimental analysis of degenerate vector phase-sensitive amplification,” Opt. Express 22, 21889–21902 (2014).
[Crossref] [PubMed]

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

S. L. Olsson, T. A. Eriksson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Linear and nonlinear transmission of 16-QAM over 105 km phase-sensitive amplified link,” in Optical Fiber Communication Conference (OFC 2014), paper Th1H.3.

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.1.

Malik, R.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
[Crossref]

Manning, R. J.

Marhic, M.

McKinstrie, C.

Mulvad, H.-C.

N. K. Kjller, M. Galili, K. Dalgaard, H.-C. Mulvad, K. Røge, and L.-K. Oxenløwe, “Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

Namiki, S.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Phase comparator using phase sensitive amplifier for phase noise-tolerant carrier phase recovery of QPSK signals,” in 18th OptoElectronics and Communications Conference (OECC 2013) held jointly with 2013 International Conference on Photonics in Switching, paper TuS2-4.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Low-penalty phase de-multiplexing of QPSK signal by dual-pump phase sensitive amplifiers,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.5.

Olsson, S. L.

S. L. Olsson, T. A. Eriksson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Linear and nonlinear transmission of 16-QAM over 105 km phase-sensitive amplified link,” in Optical Fiber Communication Conference (OFC 2014), paper Th1H.3.

Olsson, S. L. I.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
[Crossref]

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.1.

Oxenløwe, L.-K.

N. K. Kjller, M. Galili, K. Dalgaard, H.-C. Mulvad, K. Røge, and L.-K. Oxenløwe, “Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

Palsdottir, B.

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

Parmigiani, F.

F. Parmigiani, G. Hesketh, R. Slavik, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shifts,” IEEE Photon. Technol. Lett. 26, 2146–2149 (2014).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

F. Parmigiani, R. Slavík, G. Hesketh, P. Petropoulos, and D. J. Richardson, “Quadrature Decomposition of Optical Fields using two Orthogonal Phase Sensitive Amplifiers,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.8.

Pedersen, M. E. V.

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

Petropoulos, P.

F. Parmigiani, G. Hesketh, R. Slavik, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shifts,” IEEE Photon. Technol. Lett. 26, 2146–2149 (2014).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

F. Parmigiani, R. Slavík, G. Hesketh, P. Petropoulos, and D. J. Richardson, “Quadrature Decomposition of Optical Fields using two Orthogonal Phase Sensitive Amplifiers,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.8.

Peucheret, C.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
[Crossref]

Phelan, R.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

Power, M.

Proakis, J.

J. Proakis and M. Salehi, Digital Communications, McGraw-Hill higher education (McGraw-Hill Education, 2007).

Radic, S.

B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wide-band parametric mixer synthesis,” Opt. Express 20, 18611–18619 (2012).
[Crossref] [PubMed]

C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).
[Crossref] [PubMed]

V. Ataie, E. Temprana, N. Alic, and S. Radic, “Demonstration of Local-Oscillator Phase-Noise Tolerant 40 GBaud/s Coherent Transmitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

Richardson, D. J.

F. Parmigiani, G. Hesketh, R. Slavik, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shifts,” IEEE Photon. Technol. Lett. 26, 2146–2149 (2014).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

F. Parmigiani, R. Slavík, G. Hesketh, P. Petropoulos, and D. J. Richardson, “Quadrature Decomposition of Optical Fields using two Orthogonal Phase Sensitive Amplifiers,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.8.

Richter, T.

T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.2.

Røge, K.

N. K. Kjller, M. Galili, K. Dalgaard, H.-C. Mulvad, K. Røge, and L.-K. Oxenløwe, “Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

Salehi, M.

J. Proakis and M. Salehi, Digital Communications, McGraw-Hill higher education (McGraw-Hill Education, 2007).

Schubert, C.

T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.2.

Sjödin, M.

Slavik, R.

F. Parmigiani, G. Hesketh, R. Slavik, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shifts,” IEEE Photon. Technol. Lett. 26, 2146–2149 (2014).
[Crossref]

Slavík, R.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

F. Parmigiani, R. Slavík, G. Hesketh, P. Petropoulos, and D. J. Richardson, “Quadrature Decomposition of Optical Fields using two Orthogonal Phase Sensitive Amplifiers,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.8.

Syvridis, D.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

Temprana, E.

V. Ataie, E. Temprana, N. Alic, and S. Radic, “Demonstration of Local-Oscillator Phase-Noise Tolerant 40 GBaud/s Coherent Transmitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

Tkach, R. W.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Webb, R. P.

Winzer, P. J.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Wong, K.

Wymeersch, H.

Xu, J.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
[Crossref]

Zhao, X.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281, 2755– 2759 (2008).
[Crossref]

Zheng, Z.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281, 2755– 2759 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (3)

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013).
[Crossref]

F. Parmigiani, G. Hesketh, R. Slavik, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shifts,” IEEE Photon. Technol. Lett. 26, 2146–2149 (2014).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (2)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011).
[Crossref]

Opt. Commun. (1)

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281, 2755– 2759 (2008).
[Crossref]

Opt. Express (7)

Other (10)

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Phase comparator using phase sensitive amplifier for phase noise-tolerant carrier phase recovery of QPSK signals,” in 18th OptoElectronics and Communications Conference (OECC 2013) held jointly with 2013 International Conference on Photonics in Switching, paper TuS2-4.

N. K. Kjller, M. Galili, K. Dalgaard, H.-C. Mulvad, K. Røge, and L.-K. Oxenløwe, “Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

F. Parmigiani, R. Slavík, G. Hesketh, P. Petropoulos, and D. J. Richardson, “Quadrature Decomposition of Optical Fields using two Orthogonal Phase Sensitive Amplifiers,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.8.

V. Ataie, E. Temprana, N. Alic, and S. Radic, “Demonstration of Local-Oscillator Phase-Noise Tolerant 40 GBaud/s Coherent Transmitter,” 39th European Conference and Exhibition on Optical Communication (ECOC 2014), paper Tu.4.6.2.

J. Proakis and M. Salehi, Digital Communications, McGraw-Hill higher education (McGraw-Hill Education, 2007).

L. Grüner-Nielsen, S. Herstrm, S. Dasgupta, D. J. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Palsdottir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in IEEE Winter Topicals Meetings (WTM 2011), paper MD4.2.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Low-penalty phase de-multiplexing of QPSK signal by dual-pump phase sensitive amplifiers,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.5.

T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.2.

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.1.

S. L. Olsson, T. A. Eriksson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Linear and nonlinear transmission of 16-QAM over 105 km phase-sensitive amplified link,” in Optical Fiber Communication Conference (OFC 2014), paper Th1H.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Polarization diagram of a degenerate vector amplifier operating without input idler
Fig. 2
Fig. 2 Schematic of the proposed PLL. RF, radio frequency; ADC, analog-to-digital converter; DSP, digital signal processing.
Fig. 3
Fig. 3 Block diagram of the experimental setup used for quadrature demultiplexing. The monitor port included optical spectrum analyzers (OSA), polarimeter and digital coherent receiver. WSS, wavelength-selective switch; PC. polarization controller, EDFA, erbium-doped fiber amplifier; OBPF, optical band-pass filter; TX: transmitter; PZT, piezo-elecro transducer; PBS, polarization beam splitter; VOA, variable optical attenuator, RX: preamplified differential receiver; PLL, phase-locked loop.
Fig. 4
Fig. 4 Spectra of the vector FOPA input and output decomposed on the polarizations given by the P2 and the P1 polarizations. FWM, four-wave mixing; HOI, higher-order idler.
Fig. 5
Fig. 5 Constellation diagrams of the degenerate wave at the vector FOPA input (QPSK signal) and output (DP-BPSK signal). The input signal is a single-polarized QPSK signal co-polarized with P2 and cross-polarized with P1. The polarization for each output BPSK signal forms at 45° (Jones space) angle with each pump polarization. Note that pump polarizations are chosen to be ’X’ and ’Y’ in order to maintain the definitions used in Section 2.
Fig. 6
Fig. 6 BER vs. received optical power for a BPSK signal, QPSK signal, signal (QPSK) after the vector FOPA, idler (conjugated QPSK) after FOPA, and BPSK signals in which the I and Q components are demultiplexed.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D out = μ S in x + ν S in * y = | S in | [ ( μ x + ν y ) cos ( ϕ S ) + j ( μ x ν y ) sin ( ϕ S ) ] ,
P I = ( ν x + μ y ) / | μ | 2 + | ν | 2 ,
P Q = ( ν x μ y ) / | μ | 2 + | ν | 2 .
S pol , I = 2 μ ν | S in | cos ( ϕ S ) / | μ | 2 + | ν | 2
S pol , Q = 2 μ ν | S in | sin ( ϕ S ) / | μ | 2 + | ν | 2
S pol , I = 2 μ ν | S in | cos ( ϕ Data + ϕ Drift ) / | μ | 2 + | ν | 2 .

Metrics