Abstract

In this article, we propose a novel kind of widely tunable surface plasmon polaritons (SPP) bandgap in a Kerr nonlinear metal-insulator-metal waveguide. By two identical gratings, the pump beam is coupled to two opposing SPP waves, which interfere with each other and results in SPP standing wave in the region between the two gratings. The refractive index of the Kerr nonlinear material is then periodically modulated by the SPP standing wave, and a SPP bandgap is formed. The position of the SPP bandgap can be tuned from 1.4 μm to 1.75 μm by adjusting the pump wavelength, and the relationship between the transmittance contrast of the bandgap and the pump power is also studied. Comparing with existing methods that directly modulate the refractive index (RI) or the width of the waveguide, in our work, the periodic modulation of the RI comes from the interference of the pump light, which can greatly simplify the fabrication. This work may find applications in the design of novel nonlinear devices for future all-optical integrated circuits.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating

Junghyun Park, Hwi Kim, and Byoungho Lee
Opt. Express 16(1) 413-425 (2008)

A wide bandgap plasmonic Bragg reflector

Jian-Qiang Liu, Ling-Ling Wang, Meng-Dong He, Wei-Qing Huang, Dianyuan Wang, B. S. Zou, and Shuangchun Wen
Opt. Express 16(7) 4888-4894 (2008)

Optical bistability in metal–insulator–metal plasmonic Bragg waveguides with Kerr nonlinear defects

Hua Lu, Xueming Liu, Yongkang Gong, Dong Mao, and Leiran Wang
Appl. Opt. 50(10) 1307-1311 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  3. J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010).
    [Crossref] [PubMed]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [Crossref] [PubMed]
  5. J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
    [Crossref]
  6. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [Crossref]
  7. R. X. Yang, R. A. Wahsheh, Z. L. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35, 649–651 (2010).
    [Crossref] [PubMed]
  8. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
    [Crossref]
  9. P. H. Lee and Y. C. Lan, “Plasmonic waveguide filters based on tunneling and cavity effects,” Plasmonics 5, 417–422 (2010).
    [Crossref]
  10. N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and mux/demux suitable for photonic integrated circuits,” Opt. Commun. 284, 3449–3455 (2011).
    [Crossref]
  11. X. Piao, S. Yu, and N. Park, “Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20, 18994–18999 (2012).
    [Crossref] [PubMed]
  12. Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
    [Crossref]
  13. Y. J. Chang, “Design and analysis of metal/multi-insulator/metal waveguide plasmonic bragg grating,” Opt. Express 18, 13258–13270 (2010).
    [Crossref] [PubMed]
  14. B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
    [Crossref]
  15. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318–11323 (2006).
    [Crossref]
  16. J. Park, H. Kim, and B. Lee, “High order plasmonic bragg reflection in the metal-insulator-metal waveguide bragg grating,” Opt. Express 16, 413–425 (2008).
    [Crossref] [PubMed]
  17. Y. F. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
    [Crossref] [PubMed]
  18. P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express 20, 3408–3423 (2012).
    [Crossref] [PubMed]
  19. G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
    [Crossref] [PubMed]
  20. M. B. Pu, N. Yao, C. G. Hu, X. C. Xin, Z. Y. Zhao, C. T. Wang, and X. G. Luo, “Directional coupler and nonlinear mach-zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).
    [Crossref] [PubMed]
  21. H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Optical bistability in metal-insulator-metal plasmonic bragg waveguides with kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
    [Crossref] [PubMed]
  22. Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on bragg grating resonators in metal-insulator-metal plasmonic waveguides,” Aip Adv. 3, 012106 (2013).
    [Crossref]
  23. Purnima D. Mohan and S. Rani, “Optical nonlinear refractive and limiting behavior of nickel complex dye doped solid-state matrix for both visible and near infra-red nanosecond excitations,” Optik 124, 1741–1745 (2013).
    [Crossref]
  24. E. D. Palik, Handbook of Optical Constants of Solids Academic Press handbook series (Academic, 1985).
  25. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [Crossref]
  26. S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).

2013 (2)

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on bragg grating resonators in metal-insulator-metal plasmonic waveguides,” Aip Adv. 3, 012106 (2013).
[Crossref]

Purnima D. Mohan and S. Rani, “Optical nonlinear refractive and limiting behavior of nickel complex dye doped solid-state matrix for both visible and near infra-red nanosecond excitations,” Optik 124, 1741–1745 (2013).
[Crossref]

2012 (3)

2011 (3)

2010 (7)

2009 (1)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

2008 (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

J. Park, H. Kim, and B. Lee, “High order plasmonic bragg reflection in the metal-insulator-metal waveguide bragg grating,” Opt. Express 16, 413–425 (2008).
[Crossref] [PubMed]

2007 (1)

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[Crossref]

2006 (3)

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318–11323 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

2005 (1)

B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Abushagur, M. A. G.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Borghs, G.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express 20, 3408–3423 (2012).
[Crossref] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Bozhevolnyi, S. I.

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Cai, W.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on bragg grating resonators in metal-insulator-metal plasmonic waveguides,” Aip Adv. 3, 012106 (2013).
[Crossref]

Chang, Y. J.

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Forsberg, E.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Gong, Y. K.

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[Crossref] [PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Optical bistability in metal-insulator-metal plasmonic bragg waveguides with kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[Crossref] [PubMed]

Gosciniak, J.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Granpayeh, N.

N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and mux/demux suitable for photonic integrated circuits,” Opt. Commun. 284, 3449–3455 (2011).
[Crossref]

Han, Z. H.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[Crossref]

He, S. L.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[Crossref]

Holmgaard, T.

Hosseini, A.

Hu, C. G.

Kim, H.

Kim, J.

Kim, K. Y.

Lagae, L.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express 20, 3408–3423 (2012).
[Crossref] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Lan, Y. C.

P. H. Lee and Y. C. Lan, “Plasmonic waveguide filters based on tunneling and cavity effects,” Plasmonics 5, 417–422 (2010).
[Crossref]

Lee, B.

Lee, I. M.

Lee, P. H.

P. H. Lee and Y. C. Lan, “Plasmonic waveguide filters based on tunneling and cavity effects,” Plasmonics 5, 417–422 (2010).
[Crossref]

Lee, S. Y.

Liu, X. M.

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[Crossref] [PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Optical bistability in metal-insulator-metal plasmonic bragg waveguides with kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[Crossref] [PubMed]

Liu, Y.

Liu, Y. F.

Lu, H.

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[Crossref] [PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Optical bistability in metal-insulator-metal plasmonic bragg waveguides with kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[Crossref] [PubMed]

Lu, Z. L.

Luo, X. G.

Maier, S. A.

S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).

Mao, D.

Massoud, Y.

Mohan, Purnima D.

Purnima D. Mohan and S. Rani, “Optical nonlinear refractive and limiting behavior of nickel complex dye doped solid-state matrix for both visible and near infra-red nanosecond excitations,” Optik 124, 1741–1745 (2013).
[Crossref]

Na, H.

Neutens, P.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express 20, 3408–3423 (2012).
[Crossref] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Nozhat, N.

N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and mux/demux suitable for photonic integrated circuits,” Opt. Commun. 284, 3449–3455 (2011).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids Academic Press handbook series (Academic, 1985).

Park, J.

Park, N.

Piao, X.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Pu, M. B.

Rani, S.

Purnima D. Mohan and S. Rani, “Optical nonlinear refractive and limiting behavior of nickel complex dye doped solid-state matrix for both visible and near infra-red nanosecond excitations,” Optik 124, 1741–1745 (2013).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Van Dorpe, P.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express 20, 3408–3423 (2012).
[Crossref] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Wahsheh, R. A.

Wang, B.

B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

Wang, C. T.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

Wang, G. X.

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[Crossref] [PubMed]

Wang, L.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on bragg grating resonators in metal-insulator-metal plasmonic waveguides,” Aip Adv. 3, 012106 (2013).
[Crossref]

Wang, L. R.

Xiang, Y. X.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on bragg grating resonators in metal-insulator-metal plasmonic waveguides,” Aip Adv. 3, 012106 (2013).
[Crossref]

Xin, X. C.

Xu, J. J.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on bragg grating resonators in metal-insulator-metal plasmonic waveguides,” Aip Adv. 3, 012106 (2013).
[Crossref]

Yang, R. X.

Yao, N.

Ying, C. F.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on bragg grating resonators in metal-insulator-metal plasmonic waveguides,” Aip Adv. 3, 012106 (2013).
[Crossref]

Yu, S.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Zhang, X. Z.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on bragg grating resonators in metal-insulator-metal plasmonic waveguides,” Aip Adv. 3, 012106 (2013).
[Crossref]

Zhao, Z. Y.

Aip Adv. (1)

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on bragg grating resonators in metal-insulator-metal plasmonic waveguides,” Aip Adv. 3, 012106 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[Crossref]

J. Lightwave Technol. (1)

Nanotechnology (1)

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and mux/demux suitable for photonic integrated circuits,” Opt. Commun. 284, 3449–3455 (2011).
[Crossref]

Opt. Express (8)

X. Piao, S. Yu, and N. Park, “Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20, 18994–18999 (2012).
[Crossref] [PubMed]

Y. J. Chang, “Design and analysis of metal/multi-insulator/metal waveguide plasmonic bragg grating,” Opt. Express 18, 13258–13270 (2010).
[Crossref] [PubMed]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318–11323 (2006).
[Crossref]

J. Park, H. Kim, and B. Lee, “High order plasmonic bragg reflection in the metal-insulator-metal waveguide bragg grating,” Opt. Express 16, 413–425 (2008).
[Crossref] [PubMed]

Y. F. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
[Crossref] [PubMed]

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express 20, 3408–3423 (2012).
[Crossref] [PubMed]

J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010).
[Crossref] [PubMed]

M. B. Pu, N. Yao, C. G. Hu, X. C. Xin, Z. Y. Zhao, C. T. Wang, and X. G. Luo, “Directional coupler and nonlinear mach-zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Optik (1)

Purnima D. Mohan and S. Rani, “Optical nonlinear refractive and limiting behavior of nickel complex dye doped solid-state matrix for both visible and near infra-red nanosecond excitations,” Optik 124, 1741–1745 (2013).
[Crossref]

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Plasmonics (1)

P. H. Lee and Y. C. Lan, “Plasmonic waveguide filters based on tunneling and cavity effects,” Plasmonics 5, 417–422 (2010).
[Crossref]

Other (2)

S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids Academic Press handbook series (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) The schematic diagram of the nonlinear MIM structure; (b) The electric field distribution of the MIM waveguide under plane-wave incidence without considering nonlinearity.
Fig. 2
Fig. 2 The electric field distribution in the MIM waveguide under a 40 MW/cm2 pump beam at the wavelength of 1.55 μm; (b) The modulated RI in the MIM waveguide; (c) The transmittance spectra of the MIM waveguide for different pump powers from 20 to 100 MW/cm2.
Fig. 3
Fig. 3 (a) The electric field distribution in the center line of the MIM waveguide for wavelengths from 1.2 μm to 2.0 μm; (b) The transmittance spectra for pump wavelengths from 1.4 μm to 1.,75 μm, respectively. The pump power is 100 MW/cm2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

tanh ( 1 2 k 1 w I ) = ε 1 k 2 ε 2 k 1
k i 2 = β 2 ε i k 0 2 ( i = 1 , 2 )
E ( i ) = FDTD ( n ( i ) )
n direct ( i + 1 ) = n 0 + n 1 | E ( i ) | 2
n ( i + 1 ) = ( 1 f ) n ( i ) + f n direct ( i + 1 )

Metrics