Abstract

We demonstrate high atomic mercury vapor pressure in a kagomé-style hollow-core photonic crystal fiber at room temperature. After a few days of exposure to mercury vapor the fiber is homogeneously filled and the optical depth achieved remains constant. With incoherent optical pumping from the ground state we achieve an optical depth of 114 at the 63P2 - 63D3 transition, corresponding to an atomic mercury number density of 6 × 1010 cm−3. The use of mercury vapor in quasi one-dimensional confinement may be advantageous compared to chemically more active alkali vapor, while offering strong optical nonlinearities in the ultraviolet region of the optical spectrum.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers

Aaron D. Slepkov, Amar R. Bhagwat, Vivek Venkataraman, Pablo Londero, and Alexander L. Gaeta
Opt. Express 16(23) 18976-18983 (2008)

Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers

Krzysztof T. Kaczmarek, Dylan J. Saunders, Michael R. Sprague, W. Steven Kolthammer, Amir Feizpour, Patrick M. Ledingham, Benjamin Brecht, Eilon Poem, Ian A. Walmsley, and Joshua Nunn
Opt. Lett. 40(23) 5582-5585 (2015)

Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]

John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell
J. Opt. Soc. Am. B 28(12) A11-A26 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  2. A. Furusawa and P. Van Loock, Quantum Teleportation and Entanglement: a Hybrid Approach to Optical Quantum Information Processing (John Wiley & Sons, 2011).
  3. D. G. Angelakis, M. X. Huo, D. Chang, L. C. Kwek, and V. Korepin, “Mimicking Interacting Relativistic Theories with Stationary Pulses of Light,” Phys. Rev. Lett. 110(10), 100502 (2013).
    [Crossref] [PubMed]
  4. D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
    [Crossref]
  5. O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502(7469), 71–75 (2013).
    [Crossref] [PubMed]
  6. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  7. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010).
    [Crossref] [PubMed]
  8. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [Crossref] [PubMed]
  9. M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
    [Crossref]
  10. A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers,” Opt. Express 16(23), 18976–18983 (2008).
    [Crossref] [PubMed]
  11. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
    [Crossref] [PubMed]
  12. K. Dholakia, “Atom hosepipes,” Contemp. Phys. 39(5), 351–369 (1998).
    [Crossref]
  13. J. A. Pechkis and F. K. Fatemi, “Cold atom guidance in a capillary using blue-detuned, hollow optical modes,” Opt. Express 20(12), 13409–13418 (2012).
    [Crossref] [PubMed]
  14. F. Blatt, T. Halfmann, and T. Peters, “One-dimensional ultracold medium of extreme optical depth,” Opt. Lett. 39(3), 446–449 (2014).
    [Crossref] [PubMed]
  15. G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
    [Crossref] [PubMed]
  16. F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. S. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22(13), 15388–15396 (2014).
    [Crossref] [PubMed]
  17. M. H. Keirns and S. D. Colson, “Analysis of the hyperfine structure of the mercury 63D3-63P2 transition,” J. Opt. Soc. Am. 65(12), 1413 (1975).
    [Crossref]
  18. M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
    [Crossref]
  19. E. G. Thaler, R. H. Wilson, D. A. Doughty, and W. W. Beersb, “Measurement of mercury bound in the glass envelope during operation of fluorescent lamps,” J. Electrochem. Soc. 142(6), 1968 (1995).
    [Crossref]
  20. L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical Lattice Trapping of 199Hg and Determination of the Magic Wavelength for the Ultraviolet 1S0-3P0 Clock Transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
    [Crossref] [PubMed]
  21. P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1-2), 251–255 (2011).
    [Crossref]
  22. D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett. 109(6), 063901 (2012).
    [Crossref] [PubMed]
  23. S. Spälter, P. van Loock, A. Sizmann, and G. Leuchs, “Quantum non-demolition measurements with optical solitons,” Appl. Phys. B 64, 213 (1996).
  24. W. Zhong, C. Marquardt, G. Leuchs, U. L. Andersen, P. Light, F. Couny, and F. Benabid, “Squeezing by self-induced transparency in Rb filled hollow core fibers,” CLEOE-IQEC2007, doi: .
    [Crossref]
  25. R. Marskar and U. L. Österberg, “Backpropagation and decay of self-induced-transparency pulses,” Phys. Rev. A 89(2), 023828 (2014).
    [Crossref]

2014 (6)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

F. Blatt, T. Halfmann, and T. Peters, “One-dimensional ultracold medium of extreme optical depth,” Opt. Lett. 39(3), 446–449 (2014).
[Crossref] [PubMed]

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
[Crossref] [PubMed]

F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. S. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22(13), 15388–15396 (2014).
[Crossref] [PubMed]

R. Marskar and U. L. Österberg, “Backpropagation and decay of self-induced-transparency pulses,” Phys. Rev. A 89(2), 023828 (2014).
[Crossref]

2013 (2)

D. G. Angelakis, M. X. Huo, D. Chang, L. C. Kwek, and V. Korepin, “Mimicking Interacting Relativistic Theories with Stationary Pulses of Light,” Phys. Rev. Lett. 110(10), 100502 (2013).
[Crossref] [PubMed]

O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502(7469), 71–75 (2013).
[Crossref] [PubMed]

2012 (2)

J. A. Pechkis and F. K. Fatemi, “Cold atom guidance in a capillary using blue-detuned, hollow optical modes,” Opt. Express 20(12), 13409–13418 (2012).
[Crossref] [PubMed]

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett. 109(6), 063901 (2012).
[Crossref] [PubMed]

2011 (2)

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical Lattice Trapping of 199Hg and Determination of the Magic Wavelength for the Ultraviolet 1S0-3P0 Clock Transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1-2), 251–255 (2011).
[Crossref]

2010 (1)

2009 (1)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

2008 (2)

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers,” Opt. Express 16(23), 18976–18983 (2008).
[Crossref] [PubMed]

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

2006 (2)

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[Crossref]

1998 (1)

K. Dholakia, “Atom hosepipes,” Contemp. Phys. 39(5), 351–369 (1998).
[Crossref]

1996 (1)

S. Spälter, P. van Loock, A. Sizmann, and G. Leuchs, “Quantum non-demolition measurements with optical solitons,” Appl. Phys. B 64, 213 (1996).

1995 (2)

E. G. Thaler, R. H. Wilson, D. A. Doughty, and W. W. Beersb, “Measurement of mercury bound in the glass envelope during operation of fluorescent lamps,” J. Electrochem. Soc. 142(6), 1968 (1995).
[Crossref]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

1975 (1)

Abdolvand, A.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Andersen, U. L.

W. Zhong, C. Marquardt, G. Leuchs, U. L. Andersen, P. Light, F. Couny, and F. Benabid, “Squeezing by self-induced transparency in Rb filled hollow core fibers,” CLEOE-IQEC2007, doi: .
[Crossref]

Anderson, D. Z.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Angelakis, D. G.

D. G. Angelakis, M. X. Huo, D. Chang, L. C. Kwek, and V. Korepin, “Mimicking Interacting Relativistic Theories with Stationary Pulses of Light,” Phys. Rev. Lett. 110(10), 100502 (2013).
[Crossref] [PubMed]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Beersb, W. W.

E. G. Thaler, R. H. Wilson, D. A. Doughty, and W. W. Beersb, “Measurement of mercury bound in the glass envelope during operation of fluorescent lamps,” J. Electrochem. Soc. 142(6), 1968 (1995).
[Crossref]

Benabid, F.

W. Zhong, C. Marquardt, G. Leuchs, U. L. Andersen, P. Light, F. Couny, and F. Benabid, “Squeezing by self-induced transparency in Rb filled hollow core fibers,” CLEOE-IQEC2007, doi: .
[Crossref]

Bhagwat, A. R.

Bize, S.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical Lattice Trapping of 199Hg and Determination of the Magic Wavelength for the Ultraviolet 1S0-3P0 Clock Transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Blatt, F.

Champion, T. F. M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Chang, D.

D. G. Angelakis, M. X. Huo, D. Chang, L. C. Kwek, and V. Korepin, “Mimicking Interacting Relativistic Theories with Stationary Pulses of Light,” Phys. Rev. Lett. 110(10), 100502 (2013).
[Crossref] [PubMed]

Chang, D. E.

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Chang, W.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Colson, S. D.

Cornell, E. A.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Couny, F.

W. Zhong, C. Marquardt, G. Leuchs, U. L. Andersen, P. Light, F. Couny, and F. Benabid, “Squeezing by self-induced transparency in Rb filled hollow core fibers,” CLEOE-IQEC2007, doi: .
[Crossref]

Demler, E. A.

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Dholakia, K.

K. Dholakia, “Atom hosepipes,” Contemp. Phys. 39(5), 351–369 (1998).
[Crossref]

Doughty, D. A.

E. G. Thaler, R. H. Wilson, D. A. Doughty, and W. W. Beersb, “Measurement of mercury bound in the glass envelope during operation of fluorescent lamps,” J. Electrochem. Soc. 142(6), 1968 (1995).
[Crossref]

England, D. G.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Epple, G.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
[Crossref] [PubMed]

Ermolov, A.

Euser, T. G.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
[Crossref] [PubMed]

Fatemi, F. K.

Firstenberg, O.

O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502(7469), 71–75 (2013).
[Crossref] [PubMed]

Friend, D. G.

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[Crossref]

Frosz, M. H.

Gaeta, A. L.

Gebert, F.

Gorshkov, A. V.

O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502(7469), 71–75 (2013).
[Crossref] [PubMed]

Gritsev, V.

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Halfmann, T.

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Huber, M. L.

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[Crossref]

Huo, M. X.

D. G. Angelakis, M. X. Huo, D. Chang, L. C. Kwek, and V. Korepin, “Mimicking Interacting Relativistic Theories with Stationary Pulses of Light,” Phys. Rev. Lett. 110(10), 100502 (2013).
[Crossref] [PubMed]

Jin, X. M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Joly, N. Y.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
[Crossref] [PubMed]

F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. S. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22(13), 15388–15396 (2014).
[Crossref] [PubMed]

Keirns, M. H.

Kleinbach, K. S.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
[Crossref] [PubMed]

Kolbe, D.

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett. 109(6), 063901 (2012).
[Crossref] [PubMed]

Kolthammer, W. S.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Korepin, V.

D. G. Angelakis, M. X. Huo, D. Chang, L. C. Kwek, and V. Korepin, “Mimicking Interacting Relativistic Theories with Stationary Pulses of Light,” Phys. Rev. Lett. 110(10), 100502 (2013).
[Crossref] [PubMed]

Kwek, L. C.

D. G. Angelakis, M. X. Huo, D. Chang, L. C. Kwek, and V. Korepin, “Mimicking Interacting Relativistic Theories with Stationary Pulses of Light,” Phys. Rev. Lett. 110(10), 100502 (2013).
[Crossref] [PubMed]

Laesecke, A.

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[Crossref]

Le Coq, Y.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical Lattice Trapping of 199Hg and Determination of the Magic Wavelength for the Ultraviolet 1S0-3P0 Clock Transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Leuchs, G.

S. Spälter, P. van Loock, A. Sizmann, and G. Leuchs, “Quantum non-demolition measurements with optical solitons,” Appl. Phys. B 64, 213 (1996).

W. Zhong, C. Marquardt, G. Leuchs, U. L. Andersen, P. Light, F. Couny, and F. Benabid, “Squeezing by self-induced transparency in Rb filled hollow core fibers,” CLEOE-IQEC2007, doi: .
[Crossref]

Liang, Q. Y.

O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502(7469), 71–75 (2013).
[Crossref] [PubMed]

Light, P.

W. Zhong, C. Marquardt, G. Leuchs, U. L. Andersen, P. Light, F. Couny, and F. Benabid, “Squeezing by self-induced transparency in Rb filled hollow core fibers,” CLEOE-IQEC2007, doi: .
[Crossref]

Londero, P.

Löw, R.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
[Crossref] [PubMed]

Lukin, M. D.

O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502(7469), 71–75 (2013).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Marquardt, C.

W. Zhong, C. Marquardt, G. Leuchs, U. L. Andersen, P. Light, F. Couny, and F. Benabid, “Squeezing by self-induced transparency in Rb filled hollow core fibers,” CLEOE-IQEC2007, doi: .
[Crossref]

Marskar, R.

R. Marskar and U. L. Österberg, “Backpropagation and decay of self-induced-transparency pulses,” Phys. Rev. A 89(2), 023828 (2014).
[Crossref]

McFerran, J. J.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical Lattice Trapping of 199Hg and Determination of the Magic Wavelength for the Ultraviolet 1S0-3P0 Clock Transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Mejri, S.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical Lattice Trapping of 199Hg and Determination of the Magic Wavelength for the Ultraviolet 1S0-3P0 Clock Transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Michelberger, P. S.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Morigi, G.

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Nunn, J.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Österberg, U. L.

R. Marskar and U. L. Österberg, “Backpropagation and decay of self-induced-transparency pulses,” Phys. Rev. A 89(2), 023828 (2014).
[Crossref]

Pechkis, J. A.

Peters, T.

Peyronel, T.

O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502(7469), 71–75 (2013).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Pfau, T.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
[Crossref] [PubMed]

Renn, M. J.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Russell, P. S.

Russell, P. St. J.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
[Crossref] [PubMed]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

Scheid, M.

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett. 109(6), 063901 (2012).
[Crossref] [PubMed]

Schmidt, P. O.

Siol, S.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1-2), 251–255 (2011).
[Crossref]

Sizmann, A.

S. Spälter, P. van Loock, A. Sizmann, and G. Leuchs, “Quantum non-demolition measurements with optical solitons,” Appl. Phys. B 64, 213 (1996).

Slepkov, A. D.

Spälter, S.

S. Spälter, P. van Loock, A. Sizmann, and G. Leuchs, “Quantum non-demolition measurements with optical solitons,” Appl. Phys. B 64, 213 (1996).

Sprague, M. R.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Thaler, E. G.

E. G. Thaler, R. H. Wilson, D. A. Doughty, and W. W. Beersb, “Measurement of mercury bound in the glass envelope during operation of fluorescent lamps,” J. Electrochem. Soc. 142(6), 1968 (1995).
[Crossref]

Travers, J. C.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

van Loock, P.

S. Spälter, P. van Loock, A. Sizmann, and G. Leuchs, “Quantum non-demolition measurements with optical solitons,” Appl. Phys. B 64, 213 (1996).

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Venkataraman, V.

Villwock, P.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1-2), 251–255 (2011).
[Crossref]

Vuletic, V.

O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502(7469), 71–75 (2013).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Walmsley, I. A.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

Walther, T.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1-2), 251–255 (2011).
[Crossref]

Walz, J.

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett. 109(6), 063901 (2012).
[Crossref] [PubMed]

Wan, Y.

Weiss, T.

Wieman, C. E.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Wilson, R. H.

E. G. Thaler, R. H. Wilson, D. A. Doughty, and W. W. Beersb, “Measurement of mercury bound in the glass envelope during operation of fluorescent lamps,” J. Electrochem. Soc. 142(6), 1968 (1995).
[Crossref]

Yi, L.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical Lattice Trapping of 199Hg and Determination of the Magic Wavelength for the Ultraviolet 1S0-3P0 Clock Transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Zhong, W.

W. Zhong, C. Marquardt, G. Leuchs, U. L. Andersen, P. Light, F. Couny, and F. Benabid, “Squeezing by self-induced transparency in Rb filled hollow core fibers,” CLEOE-IQEC2007, doi: .
[Crossref]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Appl. Phys. B (1)

S. Spälter, P. van Loock, A. Sizmann, and G. Leuchs, “Quantum non-demolition measurements with optical solitons,” Appl. Phys. B 64, 213 (1996).

Contemp. Phys. (1)

K. Dholakia, “Atom hosepipes,” Contemp. Phys. 39(5), 351–369 (1998).
[Crossref]

Eur. Phys. J. D (1)

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1-2), 251–255 (2011).
[Crossref]

Ind. Eng. Chem. Res. (1)

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[Crossref]

J. Electrochem. Soc. (1)

E. G. Thaler, R. H. Wilson, D. A. Doughty, and W. W. Beersb, “Measurement of mercury bound in the glass envelope during operation of fluorescent lamps,” J. Electrochem. Soc. 142(6), 1968 (1995).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Nat Commun (1)

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat Commun 5, 4132 (2014), doi:.
[Crossref] [PubMed]

Nat. Photonics (2)

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8(4), 287–291 (2014).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Nat. Phys. (1)

D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, “Crystallization of strongly interacting photons in a nonlinear optical fibre,” Nat. Phys. 4(11), 884–889 (2008).
[Crossref]

Nature (1)

O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502(7469), 71–75 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

R. Marskar and U. L. Österberg, “Backpropagation and decay of self-induced-transparency pulses,” Phys. Rev. A 89(2), 023828 (2014).
[Crossref]

Phys. Rev. Lett. (5)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett. 109(6), 063901 (2012).
[Crossref] [PubMed]

D. G. Angelakis, M. X. Huo, D. Chang, L. C. Kwek, and V. Korepin, “Mimicking Interacting Relativistic Theories with Stationary Pulses of Light,” Phys. Rev. Lett. 110(10), 100502 (2013).
[Crossref] [PubMed]

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical Lattice Trapping of 199Hg and Determination of the Magic Wavelength for the Ultraviolet 1S0-3P0 Clock Transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Other (2)

A. Furusawa and P. Van Loock, Quantum Teleportation and Entanglement: a Hybrid Approach to Optical Quantum Information Processing (John Wiley & Sons, 2011).

W. Zhong, C. Marquardt, G. Leuchs, U. L. Andersen, P. Light, F. Couny, and F. Benabid, “Squeezing by self-induced transparency in Rb filled hollow core fibers,” CLEOE-IQEC2007, doi: .
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental set-up. The mercury vapor in the hollow-core PCF is pumped incoherently from the side by a mercury vapor lamp (main wavelength 254 nm, with significant contributions at 405 nm, 436 nm, and 546 nm), which populates the 63P2 level. The 63P2 - 63D3 transition is probed with frequency-doubled light from a diode laser.
Fig. 2
Fig. 2 Grotrian diagram of the relevant atomic mercury levels and transitions and the hyperfine splitting of the fermionic isotopes of the transition probed in the experiments. The 365 nm transition is probed with a laser, while the other depicted transitions are driven incoherently with light from a mercury vapor lamp.
Fig. 3
Fig. 3 Transmission spectrum through the PCF at the 63P2 - 63D3 transition at 365 nm (red). The green line is the Doppler-broadened line profile based on the known position and strength of the hyperfine transitions of the involved isotopes 198Hg, 199Hg, 200Hg, 201Hg, 202Hg, and 204Hg (blue bars).
Fig. 4
Fig. 4 Maximum optical depth of the mercury filled PCF versus the length of the fiber where mercury is pumped into the 63P2 level.
Fig. 5
Fig. 5 Saturation spectroscopy on the (F = 3/2) – (F’ = 5/2) transition of 201Hg.

Metrics