Abstract

Microwave signals can be generated by beating the two orthogonal polarization modes from a dual-frequency fiber grating laser. In this paper, we present that the phase noise of the microwave signal can be significantly reduced via optical feedback by cascading an external cavity. This is achieved as a result of the bandwidth narrowing of each polarization laser mode when introducing phase-matched feedbacks into the laser cavity. By optimizing the external cavity length and the feedback ratio, the noise level over low frequencies has been reduced by up to 30 dB, from −42 to −72dBc/Hz at 1 kHz, and from −72 to −102dBc/Hz at 10kHz. Meanwhile the relaxation resonant peaks can be eliminated. Compared with the existing techniques, the present method can offer a cost-effective, low-noise microwave signal, without the requirement for complex electrical feedback system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Implementation of a widely tunable microwave signal generator based on dual-polarization fiber grating laser

Qiang Yuan, Yizhi Liang, Long Jin, Linghao Cheng, and Bai-Ou Guan
Appl. Opt. 54(4) 895-900 (2015)

Beat note stabilization in dual-polarization DFB fiber lasers by an optical phase-locked loop

M. Guionie, L. Frein, A. Carré, G. Loas, F. Bondu, E. Pinsard, L. Lablonde, B. Cadier, M. Alouini, M. Romanelli, M. Vallet, and M. Brunel
Opt. Express 26(3) 3483-3488 (2018)

Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking

Jin Huang, Changzheng Sun, Bing Xiong, and Yi Luo
Opt. Express 17(23) 20727-20734 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. R. P. Braun, G. Grosskopf, D. Rhode, and F. Schmidt, “Low phase-noise millimeter-wave generation at 64 GHz and datatransmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
    [Crossref]
  3. L. Goldberg, R. D. Esman, and K. J. Williams, “Generation and control of microwaves signals by optical techniques,” Optoelectronics, Proc. IEEE J 139(4), 288–295(1992).
    [Crossref]
  4. L. Noel, D. Marcenac, and D. Wake, “Optical millimeter-wavegeneration technique with high efficiency, purity and stability,” Electron. Lett. 32(21), 1997–1998 (1996).
    [Crossref]
  5. D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-modeDFB semiconductor laser,” Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
    [Crossref]
  6. D. Novak, Z. Ahmed, R. B. Waterhouse, and R. S. Tucker, “Signalgeneration using pulsed semiconductor lasers for application inmillimeter-wave wireless links,” Trans. Microwave Theory Tech. 43(9), 2257–2262 (1995).
    [Crossref]
  7. X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
    [Crossref]
  8. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
    [Crossref]
  9. J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31(17), 2919–2925 (2013).
    [Crossref]
  10. B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
    [Crossref]
  11. J. Maxin, S. Molin, G. Pillet, L. Morvan, and D. Dolfi, “Generation of microwave signals with a dual-frequency distributed feedback fiber laser,” Electron. Lett. 47(14), 816–818 (2011).
    [Crossref]
  12. S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
    [Crossref]
  13. S. Foster, “Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission,” Phys. Rev. A 78(1), 013820 (2008).
    [Crossref]
  14. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” J. Quantum Electronics 16(3), 1655–1661 (1980).
    [Crossref]
  15. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4(11), 2919–2925 (1986).
    [Crossref]
  16. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” J. Quantum Electronics 24(7), 1242–1247 (1988).
    [Crossref]
  17. D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” J. Quantum Electronics 27(3), 352–372 (1991).
    [Crossref]
  18. Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
    [Crossref]
  19. E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
    [Crossref]
  20. A. Tikhomirov and S. Foster, “DFB FL sensor cross-talk coupling reduction,” J. Lightwave Technol. 25(2), 533–538 (2007).
    [Crossref]
  21. S. Foster, “Complex Susceptibility of Saturated Erbium-Doped Fiber Lasers and Amplifiers,” IEEE Photon. Technol. Lett. 19(12), 895–897 (2007).
    [Crossref]
  22. “phase noise characterization of microwave oscillator–Frequency discriminator method,” Product note 11729C–2, Alilent.

2013 (1)

2012 (1)

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

2011 (1)

J. Maxin, S. Molin, G. Pillet, L. Morvan, and D. Dolfi, “Generation of microwave signals with a dual-frequency distributed feedback fiber laser,” Electron. Lett. 47(14), 816–818 (2011).
[Crossref]

2009 (3)

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2008 (1)

S. Foster, “Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission,” Phys. Rev. A 78(1), 013820 (2008).
[Crossref]

2007 (2)

A. Tikhomirov and S. Foster, “DFB FL sensor cross-talk coupling reduction,” J. Lightwave Technol. 25(2), 533–538 (2007).
[Crossref]

S. Foster, “Complex Susceptibility of Saturated Erbium-Doped Fiber Lasers and Amplifiers,” IEEE Photon. Technol. Lett. 19(12), 895–897 (2007).
[Crossref]

2006 (1)

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

2001 (2)

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[Crossref]

1998 (1)

R. P. Braun, G. Grosskopf, D. Rhode, and F. Schmidt, “Low phase-noise millimeter-wave generation at 64 GHz and datatransmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

1996 (1)

L. Noel, D. Marcenac, and D. Wake, “Optical millimeter-wavegeneration technique with high efficiency, purity and stability,” Electron. Lett. 32(21), 1997–1998 (1996).
[Crossref]

1995 (2)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-modeDFB semiconductor laser,” Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

D. Novak, Z. Ahmed, R. B. Waterhouse, and R. S. Tucker, “Signalgeneration using pulsed semiconductor lasers for application inmillimeter-wave wireless links,” Trans. Microwave Theory Tech. 43(9), 2257–2262 (1995).
[Crossref]

1991 (1)

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” J. Quantum Electronics 27(3), 352–372 (1991).
[Crossref]

1988 (1)

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” J. Quantum Electronics 24(7), 1242–1247 (1988).
[Crossref]

1986 (1)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4(11), 2919–2925 (1986).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” J. Quantum Electronics 16(3), 1655–1661 (1980).
[Crossref]

Ahmed, Z.

D. Novak, Z. Ahmed, R. B. Waterhouse, and R. S. Tucker, “Signalgeneration using pulsed semiconductor lasers for application inmillimeter-wave wireless links,” Trans. Microwave Theory Tech. 43(9), 2257–2262 (1995).
[Crossref]

Alouini, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Beausoleil, R. G.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” J. Quantum Electronics 27(3), 352–372 (1991).
[Crossref]

Benazet, B.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Braun, R. P.

R. P. Braun, G. Grosskopf, D. Rhode, and F. Schmidt, “Low phase-noise millimeter-wave generation at 64 GHz and datatransmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Bretenaker, F.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Brunel, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Chang, J.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Chen, X.

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4(11), 2919–2925 (1986).
[Crossref]

Cranch, G. A.

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

Davies, P. A.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-modeDFB semiconductor laser,” Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Deng, Z.

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Di Bin, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Dolfi, D.

J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31(17), 2919–2925 (2013).
[Crossref]

J. Maxin, S. Molin, G. Pillet, L. Morvan, and D. Dolfi, “Generation of microwave signals with a dual-frequency distributed feedback fiber laser,” Electron. Lett. 47(14), 816–818 (2011).
[Crossref]

Foster, S.

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

S. Foster, “Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission,” Phys. Rev. A 78(1), 013820 (2008).
[Crossref]

S. Foster, “Complex Susceptibility of Saturated Erbium-Doped Fiber Lasers and Amplifiers,” IEEE Photon. Technol. Lett. 19(12), 895–897 (2007).
[Crossref]

A. Tikhomirov and S. Foster, “DFB FL sensor cross-talk coupling reduction,” J. Lightwave Technol. 25(2), 533–538 (2007).
[Crossref]

Grosskopf, G.

R. P. Braun, G. Grosskopf, D. Rhode, and F. Schmidt, “Low phase-noise millimeter-wave generation at 64 GHz and datatransmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Guan, B. O.

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” J. Quantum Electronics 27(3), 352–372 (1991).
[Crossref]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” J. Quantum Electronics 16(3), 1655–1661 (1980).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” J. Quantum Electronics 16(3), 1655–1661 (1980).
[Crossref]

Le Floch, A.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Lima, C. R.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-modeDFB semiconductor laser,” Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Llopis, O.

Lv, G. P.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Marcenac, D.

L. Noel, D. Marcenac, and D. Wake, “Optical millimeter-wavegeneration technique with high efficiency, purity and stability,” Electron. Lett. 32(21), 1997–1998 (1996).
[Crossref]

Maxin, J.

J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31(17), 2919–2925 (2013).
[Crossref]

J. Maxin, S. Molin, G. Pillet, L. Morvan, and D. Dolfi, “Generation of microwave signals with a dual-frequency distributed feedback fiber laser,” Electron. Lett. 47(14), 816–818 (2011).
[Crossref]

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” J. Quantum Electronics 27(3), 352–372 (1991).
[Crossref]

Molin, S.

J. Maxin, S. Molin, G. Pillet, L. Morvan, and D. Dolfi, “Generation of microwave signals with a dual-frequency distributed feedback fiber laser,” Electron. Lett. 47(14), 816–818 (2011).
[Crossref]

Morvan, L.

J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31(17), 2919–2925 (2013).
[Crossref]

J. Maxin, S. Molin, G. Pillet, L. Morvan, and D. Dolfi, “Generation of microwave signals with a dual-frequency distributed feedback fiber laser,” Electron. Lett. 47(14), 816–818 (2011).
[Crossref]

Ni, J. S.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Noel, L.

L. Noel, D. Marcenac, and D. Wake, “Optical millimeter-wavegeneration technique with high efficiency, purity and stability,” Electron. Lett. 32(21), 1997–1998 (1996).
[Crossref]

Novak, D.

D. Novak, Z. Ahmed, R. B. Waterhouse, and R. S. Tucker, “Signalgeneration using pulsed semiconductor lasers for application inmillimeter-wave wireless links,” Trans. Microwave Theory Tech. 43(9), 2257–2262 (1995).
[Crossref]

Peng, G. D.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Petermann, K.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” J. Quantum Electronics 24(7), 1242–1247 (1988).
[Crossref]

Pillet, G.

J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31(17), 2919–2925 (2013).
[Crossref]

J. Maxin, S. Molin, G. Pillet, L. Morvan, and D. Dolfi, “Generation of microwave signals with a dual-frequency distributed feedback fiber laser,” Electron. Lett. 47(14), 816–818 (2011).
[Crossref]

Rhode, D.

R. P. Braun, G. Grosskopf, D. Rhode, and F. Schmidt, “Low phase-noise millimeter-wave generation at 64 GHz and datatransmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Rønnekleiv, E.

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[Crossref]

Schmidt, F.

R. P. Braun, G. Grosskopf, D. Rhode, and F. Schmidt, “Low phase-noise millimeter-wave generation at 64 GHz and datatransmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Schunk, N.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” J. Quantum Electronics 24(7), 1242–1247 (1988).
[Crossref]

Steinhausser, B.

Sun, Z. H.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Tam, H. Y.

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

Thony, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Tikhomirov, A.

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

A. Tikhomirov and S. Foster, “DFB FL sensor cross-talk coupling reduction,” J. Lightwave Technol. 25(2), 533–538 (2007).
[Crossref]

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4(11), 2919–2925 (1986).
[Crossref]

Tucker, R. S.

D. Novak, Z. Ahmed, R. B. Waterhouse, and R. S. Tucker, “Signalgeneration using pulsed semiconductor lasers for application inmillimeter-wave wireless links,” Trans. Microwave Theory Tech. 43(9), 2257–2262 (1995).
[Crossref]

Vallet, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

Wake, D.

L. Noel, D. Marcenac, and D. Wake, “Optical millimeter-wavegeneration technique with high efficiency, purity and stability,” Electron. Lett. 32(21), 1997–1998 (1996).
[Crossref]

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-modeDFB semiconductor laser,” Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Wang, C.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Wang, P. P.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Wang, Q. P.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Waterhouse, R. B.

D. Novak, Z. Ahmed, R. B. Waterhouse, and R. S. Tucker, “Signalgeneration using pulsed semiconductor lasers for application inmillimeter-wave wireless links,” Trans. Microwave Theory Tech. 43(9), 2257–2262 (1995).
[Crossref]

Yao, J.

Yao, J. P.

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Zhang, L. W.

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

Zhang, Y.

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

Zhao, Y. J.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Electron. Lett. (2)

L. Noel, D. Marcenac, and D. Wake, “Optical millimeter-wavegeneration technique with high efficiency, purity and stability,” Electron. Lett. 32(21), 1997–1998 (1996).
[Crossref]

J. Maxin, S. Molin, G. Pillet, L. Morvan, and D. Dolfi, “Generation of microwave signals with a dual-frequency distributed feedback fiber laser,” Electron. Lett. 47(14), 816–818 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er, Yb: Glasslaser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13(4), 367–369 (2001).
[Crossref]

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

R. P. Braun, G. Grosskopf, D. Rhode, and F. Schmidt, “Low phase-noise millimeter-wave generation at 64 GHz and datatransmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

S. Foster, “Complex Susceptibility of Saturated Erbium-Doped Fiber Lasers and Amplifiers,” IEEE Photon. Technol. Lett. 19(12), 895–897 (2007).
[Crossref]

J. Lightwave Technol. (4)

J. Quantum Electronics (3)

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” J. Quantum Electronics 24(7), 1242–1247 (1988).
[Crossref]

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” J. Quantum Electronics 27(3), 352–372 (1991).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” J. Quantum Electronics 16(3), 1655–1661 (1980).
[Crossref]

Laser Phys. Lett. (1)

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking,” Laser Phys. Lett. 9(10), 739–743 (2012).
[Crossref]

Opt. Fiber Technol. (1)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[Crossref]

Phys. Rev. A (2)

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

S. Foster, “Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission,” Phys. Rev. A 78(1), 013820 (2008).
[Crossref]

Trans. Microw. Theory Tech. (1)

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Trans. Microwave Theory Tech. (2)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-modeDFB semiconductor laser,” Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

D. Novak, Z. Ahmed, R. B. Waterhouse, and R. S. Tucker, “Signalgeneration using pulsed semiconductor lasers for application inmillimeter-wave wireless links,” Trans. Microwave Theory Tech. 43(9), 2257–2262 (1995).
[Crossref]

Other (2)

L. Goldberg, R. D. Esman, and K. J. Williams, “Generation and control of microwaves signals by optical techniques,” Optoelectronics, Proc. IEEE J 139(4), 288–295(1992).
[Crossref]

“phase noise characterization of microwave oscillator–Frequency discriminator method,” Product note 11729C–2, Alilent.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The schematic of a fiber laser with an external cavity to offer an optical feedback.
Fig. 2
Fig. 2 Experimental setup of the proposed microwave source with optical feedback. PD: Photodetector; VOA: Variable optical attenuator; WDM: Wavelength division multiplexer. PC: Polarization controller.
Fig. 3
Fig. 3 Measured phase noise spectrums with (a) a fixed external cavity length of Lext = 45 m and varying feedback rates, and (c) a fixed feedback fraction of Rext = −8.6 dB and different external cavity length (different external mode separations). Calculated and measured noise reduction ratio as a function of feedback ratio (b) and external mode separation (d).
Fig. 4
Fig. 4 Measured spectrums of the microwave signal with and without the optical feedback Rext = −3dB and Lext = 122 m.

Tables (1)

Tables Icon

Table 1 Performance comparison of various optical techniques to generate a stable microwave signal.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S v b ( f )= S v x ( f )+ S v y ( f )2 S v xy ( f ),
{ Δg=2kcos( ω o τ+ Φ ext ) Δωτ=ωτ ω o τ=Csin( ω o τ+ tan 1 a+ Φ ext ) },
C=kτ 1+ a 2 ,
S v ( f )= S v o ( f ) [ 1+Ccos( Φ ext + tan 1 a ) ] 2 ,
L ( f )= S v ( f )+20log f 1(Hz) +3dB

Metrics