Abstract

We show that a classical imaging criterion based on angular dependence of small-angle phase can be applied to any system composed of planar, uniform media to determine if it is a flat lens capable of forming a real paraxial image and to estimate the image location. The real paraxial image location obtained by this method shows agreement with past demonstrations of far-field flat-lens imaging and can even predict the location of super-resolved images in the near-field. The generality of this criterion leads to several new predictions: flat lenses for transverse-electric polarization using dielectric layers, a broadband flat lens working across the ultraviolet-visible spectrum, and a flat lens configuration with an image plane located up to several wavelengths from the exit surface. These predictions are supported by full-wave simulations. Our work shows that small-angle phase can be used as a generic metric to categorize and design flat lenses.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient flat metasurface lens for terahertz imaging

Quanlong Yang, Jianqiang Gu, Dongyang Wang, Xueqian Zhang, Zhen Tian, Chunmei Ouyang, Ranjan Singh, Jiaguang Han, and Weili Zhang
Opt. Express 22(21) 25931-25939 (2014)

Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength

Huiyu Li, Liwei Fu, Karsten Frenner, and Wolfgang Osten
Opt. Express 26(15) 19574-19582 (2018)

Spherical aberration in electrically thin flat lenses

Miguel Ruphuy and Omar M. Ramahi
J. Opt. Soc. Am. A 33(8) 1531-1536 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  2. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
    [Crossref]
  3. W. T. Lu and S. Sridhar, “Flat lens without optical axis: Theory of imaging,” Opt. Express 13, 10673–10680 (2005).
    [Crossref] [PubMed]
  4. T. Dumelow, J. A. P. da Costa, and V. N. Freire, “Slab lenses from simple anisotrpoic media,” Phys. Rev. B 72, 235115 (2005).
    [Crossref]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  6. R. J. Blaikie and S. J. McNab, “Simulation study of perfect lenses for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
    [Crossref]
  7. J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
    [Crossref]
  8. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163, (2003).
    [Crossref]
  9. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
    [Crossref]
  10. S. Durant, N. Fang, and X. Zhang, “Comment on “Submicron imaging with a planar silver lens” [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
    [Crossref]
  11. D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470–3474 (2004).
    [Crossref]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
    [Crossref] [PubMed]
  13. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
    [Crossref] [PubMed]
  14. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
    [Crossref]
  15. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
    [Crossref]
  16. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
    [Crossref]
  17. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
    [Crossref]
  18. K. J. Webb and M. Yang, “Subwavelength imaging with a multilayer silver film structure,” Opt. Lett. 31, 2130–2132 (2006).
    [Crossref] [PubMed]
  19. S. Feng and J. M. Elson, “Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms,” Opt. Express 14, 216–221 (2006).
    [Crossref] [PubMed]
  20. D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197–202 (2007).
    [Crossref]
  21. D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
    [Crossref]
  22. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008).
    [Crossref]
  23. C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17, 14260–14269 (2009).
    [Crossref] [PubMed]
  24. R. Kotynski and T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A, Pure Appl. Opt. 11, 015001 (2009).
    [Crossref]
  25. A. Pastuszczaka and R. Kotynski, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109, 084302 (2011).
    [Crossref]
  26. R. Kotynski, T. Stefaniuk, and A. Pastuszczaka, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers,” Appl. Phys. A 103, 905–909 (2011).
    [Crossref]
  27. J. Bénédicto, E. Centeno, and A. Moreau, “Lens equation for flat lenses made with hyperbolic metamaterials,” Opt. Lett. 37, 4786–4788 (2012).
    [Crossref] [PubMed]
  28. T. Xu, M. Abashin, A. Agrawal, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
    [Crossref] [PubMed]
  29. M. H. Al Shakhs, P. Ott, and K. J. Chau, “Band diagrams of layered plasmonic metamaterials,” J. App. Phys. 116, 173101 (2014).
    [Crossref]
  30. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  31. P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 6.
  32. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2005).
  33. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 4370–4379 (1972).
    [Crossref]
  34. W. M. Haynes, ed. CRC Handbook of Chemistry and Physics, 94th Ed. (CRC Press, 2013).

2014 (1)

M. H. Al Shakhs, P. Ott, and K. J. Chau, “Band diagrams of layered plasmonic metamaterials,” J. App. Phys. 116, 173101 (2014).
[Crossref]

2013 (1)

T. Xu, M. Abashin, A. Agrawal, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

A. Pastuszczaka and R. Kotynski, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109, 084302 (2011).
[Crossref]

R. Kotynski, T. Stefaniuk, and A. Pastuszczaka, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers,” Appl. Phys. A 103, 905–909 (2011).
[Crossref]

2009 (2)

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17, 14260–14269 (2009).
[Crossref] [PubMed]

R. Kotynski and T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A, Pure Appl. Opt. 11, 015001 (2009).
[Crossref]

2008 (2)

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008).
[Crossref]

2007 (1)

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197–202 (2007).
[Crossref]

2006 (3)

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[Crossref]

K. J. Webb and M. Yang, “Subwavelength imaging with a multilayer silver film structure,” Opt. Lett. 31, 2130–2132 (2006).
[Crossref] [PubMed]

S. Feng and J. M. Elson, “Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms,” Opt. Express 14, 216–221 (2006).
[Crossref] [PubMed]

2005 (6)

S. Durant, N. Fang, and X. Zhang, “Comment on “Submicron imaging with a planar silver lens” [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
[Crossref] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

W. T. Lu and S. Sridhar, “Flat lens without optical axis: Theory of imaging,” Opt. Express 13, 10673–10680 (2005).
[Crossref] [PubMed]

T. Dumelow, J. A. P. da Costa, and V. N. Freire, “Slab lenses from simple anisotrpoic media,” Phys. Rev. B 72, 235115 (2005).
[Crossref]

2004 (3)

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470–3474 (2004).
[Crossref]

2003 (2)

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163, (2003).
[Crossref]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

2002 (2)

R. J. Blaikie and S. J. McNab, “Simulation study of perfect lenses for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
[Crossref]

J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
[Crossref]

2001 (1)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 4370–4379 (1972).
[Crossref]

1968 (1)

V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Abashin, M.

T. Xu, M. Abashin, A. Agrawal, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Agrawal, A.

T. Xu, M. Abashin, A. Agrawal, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Akozbek, N.

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

Al Shakhs, M. H.

M. H. Al Shakhs, P. Ott, and K. J. Chau, “Band diagrams of layered plasmonic metamaterials,” J. App. Phys. 116, 173101 (2014).
[Crossref]

Ambati, M.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

Arnold, M. D.

Belov, P. A.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[Crossref]

Bénédicto, J.

Blaikie, R. J.

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17, 14260–14269 (2009).
[Crossref] [PubMed]

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197–202 (2007).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
[Crossref] [PubMed]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470–3474 (2004).
[Crossref]

R. J. Blaikie and S. J. McNab, “Simulation study of perfect lenses for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
[Crossref]

Bloemer, M. J.

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

Bones, P. J.

Cappeddu, M. G.

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

Centeno, E.

Centini, M.

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

Chau, K. J.

M. H. Al Shakhs, P. Ott, and K. J. Chau, “Band diagrams of layered plasmonic metamaterials,” J. App. Phys. 116, 173101 (2014).
[Crossref]

T. Xu, M. Abashin, A. Agrawal, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 4370–4379 (1972).
[Crossref]

D’Orazio, A.

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

da Costa, J. A. P.

T. Dumelow, J. A. P. da Costa, and V. N. Freire, “Slab lenses from simple anisotrpoic media,” Phys. Rev. B 72, 235115 (2005).
[Crossref]

de Celglia, D.

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

Dumelow, T.

T. Dumelow, J. A. P. da Costa, and V. N. Freire, “Slab lenses from simple anisotrpoic media,” Phys. Rev. B 72, 235115 (2005).
[Crossref]

Durant, S.

S. Durant, N. Fang, and X. Zhang, “Comment on “Submicron imaging with a planar silver lens” [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[Crossref]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

Elson, J. M.

Fang, N.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

S. Durant, N. Fang, and X. Zhang, “Comment on “Submicron imaging with a planar silver lens” [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163, (2003).
[Crossref]

Feng, S.

Freire, V. N.

T. Dumelow, J. A. P. da Costa, and V. N. Freire, “Slab lenses from simple anisotrpoic media,” Phys. Rev. B 72, 235115 (2005).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Hao, Y.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[Crossref]

Haus, J. W.

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 4370–4379 (1972).
[Crossref]

Kalinin, V. A.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

Kolinko, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2005).

Kotynski, R.

A. Pastuszczaka and R. Kotynski, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109, 084302 (2011).
[Crossref]

R. Kotynski, T. Stefaniuk, and A. Pastuszczaka, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers,” Appl. Phys. A 103, 905–909 (2011).
[Crossref]

R. Kotynski and T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A, Pure Appl. Opt. 11, 015001 (2009).
[Crossref]

Lee, H.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Lezec, H. J.

T. Xu, M. Abashin, A. Agrawal, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Lu, W. T.

McNab, S. J.

R. J. Blaikie and S. J. McNab, “Simulation study of perfect lenses for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
[Crossref]

Melville, D. O. S.

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197–202 (2007).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
[Crossref] [PubMed]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470–3474 (2004).
[Crossref]

Mock, J. J.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Moore, C. P.

Moreau, A.

Ott, P.

M. H. Al Shakhs, P. Ott, and K. J. Chau, “Band diagrams of layered plasmonic metamaterials,” J. App. Phys. 116, 173101 (2014).
[Crossref]

Pastuszczaka, A.

R. Kotynski, T. Stefaniuk, and A. Pastuszczaka, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers,” Appl. Phys. A 103, 905–909 (2011).
[Crossref]

A. Pastuszczaka and R. Kotynski, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109, 084302 (2011).
[Crossref]

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Platzman, P. M.

J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
[Crossref]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

Ringhofer, K. H.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

Rye, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Scalora, M.

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

Schurig, D.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Shamonina, E.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

Shen, J. T.

J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
[Crossref]

Smith, D. R.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Solymar, L.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

Sridhar, S.

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

Stefaniuk, T.

R. Kotynski, T. Stefaniuk, and A. Pastuszczaka, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers,” Appl. Phys. A 103, 905–909 (2011).
[Crossref]

R. Kotynski and T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A, Pure Appl. Opt. 11, 015001 (2009).
[Crossref]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

Sun, C.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Veselago, V.

V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Vincenti, M. A.

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

Webb, K. J.

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

Wolf, C. R.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[Crossref]

Xiong, Y.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

Xu, T.

T. Xu, M. Abashin, A. Agrawal, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

Yang, M.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 6.

Zhang, X.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

S. Durant, N. Fang, and X. Zhang, “Comment on “Submicron imaging with a planar silver lens” [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163, (2003).
[Crossref]

Appl. Phys. A (1)

R. Kotynski, T. Stefaniuk, and A. Pastuszczaka, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers,” Appl. Phys. A 103, 905–909 (2011).
[Crossref]

Appl. Phys. Lett. (5)

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
[Crossref]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163, (2003).
[Crossref]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[Crossref]

S. Durant, N. Fang, and X. Zhang, “Comment on “Submicron imaging with a planar silver lens” [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[Crossref]

Electron. Lett. (1)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

J. App. Phys. (1)

M. H. Al Shakhs, P. Ott, and K. J. Chau, “Band diagrams of layered plasmonic metamaterials,” J. App. Phys. 116, 173101 (2014).
[Crossref]

J. Appl. Phys. (1)

A. Pastuszczaka and R. Kotynski, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109, 084302 (2011).
[Crossref]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

R. Kotynski and T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A, Pure Appl. Opt. 11, 015001 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470–3474 (2004).
[Crossref]

Microelectron. Eng. (1)

R. J. Blaikie and S. J. McNab, “Simulation study of perfect lenses for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
[Crossref]

Nature (1)

T. Xu, M. Abashin, A. Agrawal, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497, 470–474 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

D. de Celglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77, 033848 (2008).
[Crossref]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 4370–4379 (1972).
[Crossref]

T. Dumelow, J. A. P. da Costa, and V. N. Freire, “Slab lenses from simple anisotrpoic media,” Phys. Rev. B 72, 235115 (2005).
[Crossref]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Physica B (1)

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197–202 (2007).
[Crossref]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Other (4)

W. M. Haynes, ed. CRC Handbook of Chemistry and Physics, 94th Ed. (CRC Press, 2013).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 6.

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical ray visualization of imaging in (a) a standard plano-convex lens, (b) a planar negative-index slab, and (c) a planar anisotropic slab. The red lines and blue arrows respectively indicate the local power and phase flow. (d) Imaging in a thin silver layer by evanescent wave amplification.
Fig. 2
Fig. 2 Curvature of the wavefronts exiting a planar slab for the cases of (a) virtual and (b) real image formation. By plotting the phase Φz(z = 0) versus qt = 1−cosθt, the possibility of a flat lens can be determined by inspection from a positive slope.
Fig. 3
Fig. 3 (a) PF phase for Pendry’s silver slab lens consisting of a 40-nm-thick Ag layer with a permittivity of ε̱ = −1.0 + 0.4i at a wavelength of λ0 = 356.3nm, where the object is 20 nm away from the entrance of the slab. The phase and amplitude have been calculated at the exit of the slab (z = 0 nm) and the predicted paraxial image location (z = 36 nm). (b) FDFD-simulated profile of the magnetic energy density at the image plane z = 36 nm for the cases where the sub-diffractive object is imaged without (blue) and with (red) the silver slab lens. Simulated time-averaged magnetic energy density distributions of the illuminated object are shown (c) without and (d) with the 40-nm-thick Ag layer. The yellow dashed lines in (d) show the positions where the PF phase profiles have been calculated in (a).
Fig. 4
Fig. 4 Flat lens criterion applied to past implementations. (a) PF phase at the exit surface of lenses based on the 36-nm-thick silver layer studied in Fang et al. [8], the 50-nm-thick silver layer studied in Melville et al. [13], and the 120-nm-thick silver layer studied by Melville et al. in [9, 11], along with the control used in [11] of a 120-nm-thick PMMA layer. (b) PF phase at the exit surface of lenses based on metal-dielectric multi-layers studied by Belov et al. [17]. The inset in (b) shows a magnified view of the data near normal incidence. (c) Paraxial image location as a function of unit cell repetition for the periodic metal-dielectric layered system studied Kotynski et al. [26]. (d) PF phase at the exit surface for a flat lens based on a metal-dielectric layered system studied by Xu et al. [28].
Fig. 5
Fig. 5 Comparison of paraxial image locations predicted by PF phase and numerical simulations. FDFD-calculated time-averaged energy density distributions for flat lenses consisting of (a) a 120-nm-thick silver layer studied in [9, 11], (a) a 50-nm-thick silver layer studied in [13], (c) metal-dielectric multi-layers studied in [17], and (d) metal-dielectric multi-layers studied in [28]. In all cases, we use a sub-diffractive object consisting of two, λ0/10-wide openings spaced λ0/2.5 apart in an opaque mask that is illuminated by a TM-polarized plane wave. The yellow dashed line in each panel shows the corresponding paraxial image location calculated from the slope of the output phase.
Fig. 6
Fig. 6 Paraxial image location versus thickness for an illuminated object located at the entrance of the ideal Veselago lens (red) and Pendry’s silver slab lens (blue) when illuminated at the wavelength of λ0 = 356.3nm. For the ideal Veselago lens, the image location is equivalent to the slab thickness, s = d.
Fig. 7
Fig. 7 Flat lens for TE polarization based on a 50-nm-thick lossless dielectric (n = 4) layer immersed in air and illuminated at a wavelength λ0 = 365nm. (a) PF phase at the paraxial image location s = 2nm. (b) FDFD-simulated profile of the electric energy density at the paraxial image location for the cases where the object is imaged without (red) and with (blue) the dielectric slab. Simulated time-averaged electric energy density distribution of the illuminated object are shown (c) without and (d) with the 50-nm-thick dielectric layer. The yellow dashed line in each panel shows the paraxial image location calculated by PF phase.
Fig. 8
Fig. 8 Engineering a broadband flat lens. (a) Paraxial image location over the ultraviolet-blue spectrum for a bi-layer flat lens consisting of a 28-nm-thick silver layer and a 29-nm-thick gold layer immersed in air. (b) PF phase (red) and amplitude (blue) for the bi-layer flat lens at the wavelength of λ0 = 365nm (solid lines) and λ0 = 455nm (dashed lines). Time-averaged energy density distributions for the bi-layer system under plane-wave illumination at (c) λ0 = 365nm and (d) λ0 = 455nm. The yellow dashed line in each panel shows the paraxial image location calculated by PF phase.
Fig. 9
Fig. 9 Enhancing the image plane location of the multi-layered flat lens system previously studied in [28] by immersion of the image region in a dielectric. (a) PF phase (red) and amplitude (blue) at the paraxial image location for the cases where the dielectric medium has refractive index n = 1.0, 1.3, 1.5, and 2.0. (b) Paraxial image location versus the refractive index of the dielectric medium predicted by PF phase (blue line) and FDFD simulations (red circles). (c), (d), and (e) show FDFD-calculated magnetic energy density distributions of the immersed flat lens system for n = 1.3, 1.5, and 2.0, respectively. The yellow dashed lines in panels (c)–(e) show the paraxial image location calculated by PF phase.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

s = z 0 Φ z ( z = 0 ) k t , z | k t , z = k t ,
t _ = 4 p _ ( 1 + p _ ) 2 e i k _ z d ( 1 p _ ) 2 e i k _ z d ,
Φ z , T M ( z = 0 ) q t | q t = 0 k o d ( 1 2 ( ε 1 ) + ε ε _ 2 ) ,
Φ z , T M ( z = 0 ) q t | q t = 0 k o d ε 2 ε + 2 2 ε + ( k o d ) 3 ( ε 1 ) 2 ( 3 ε 2 + 5 ε + 6 ) 24 ε ,
Φ z , T E ( z = 0 ) q t | q t = 0 k o d 3 ε 2 ( k o d ) 3 ( ε 1 ) 2 ( 3 ε 2 1 ) 24 .
Φ z , T M ( z = 0 ) q t | q t = 0 k o i d i ( 1 2 ( ε i 1 ) + ε i ε _ i 2 ) ,
ε D = 1 2 d M γ _ M d D ± ( 1 2 d M γ _ M d D ) 2 1 ,

Metrics