Abstract

Large-scale high quality microlens arrays (MLAs) play an important role in enhancing the imaging quality of CCD and CMOS as well as the light extraction efficiency of LEDs and OLEDs. To meet the requirement in MLAs’ wide application areas, a rapid fabrication method to fabricate large-scale MLAs with high quality, high fill factor and high uniformity is needed, especially on the glass substrate. In this paper, we present a simple and cost-efficient approach to the development of both concave and convex large-scale microlens arrays (MLAs) by using femtosecond laser wet etching method and replication technique. A large-scale high quality square-shaped microlens array with 512 × 512 units was fabricated.The unit size is 20 × 20 μm2 on the whole scale of 1 × 1 cm2. Its perfect uniformity and optical performance are demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method

Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou
Opt. Express 18(19) 20334-20343 (2010)

Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces

Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou
Opt. Express 20(12) 12939-12948 (2012)

Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array

Xiao-Wen Cao, Yi-Ming Lu, Hua Fan, Hong Xia, Lei Zhang, and Yong-Lai Zhang
Appl. Opt. 57(32) 9604-9608 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Lim, M. Jung, S. Y. Hwang, and S. Kang, “Development of optical system with rotational misalignment adjustment for multi- optical-probe confocal microscopy,” J. Vac. Sci. Technol. B  30(6), 06F702 (2012).
  2. E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
    [Crossref]
  3. P. B. Qu, F. Chen, H. W. Liu, Q. Yang, J. Lu, J. H. Si, Y. Q. Wang, and X. Hou, “A simple route to fabricate artificial compound eye structures,” Opt. Express 20(5), 5775–5782 (2012).
    [Crossref] [PubMed]
  4. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
    [Crossref] [PubMed]
  5. C. Y. Wu, T. H. Chiang, and C. C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express 16(24), 19978–19986 (2008).
    [Crossref] [PubMed]
  6. J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
    [Crossref] [PubMed]
  7. A. Orth and K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express 20(12), 13522–13531 (2012).
    [Crossref] [PubMed]
  8. H. C. Wei and G. D. J. Su, “Self-assembled microlens on top of light-emitting diodes using hydrophilic effect for improving extraction efficiency and increasing viewing angle,” J. Display Technol. 8(8), 444–449 (2012).
    [Crossref]
  9. M. Thomschke, S. Reineke, B. L. Lüssem, and K. Leo, “Highly Efficient White Top-Emitting Organic Light-Emitting Diodes Comprising Laminated Microlens Films,” Nano Lett. 12(1), 424–428 (2012).
    [Crossref] [PubMed]
  10. J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
    [Crossref] [PubMed]
  11. Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
    [Crossref]
  12. M. Ashral, C. Gupta, F. Chollet, S. V. Springham, and R. S. Rawat, “Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder,” Opt. Lasers Eng. 46(10), 711–720 (2008).
    [Crossref]
  13. E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50(14), 1974–1978 (2011).
    [Crossref] [PubMed]
  14. R. Yang, W. Wang, and S. A. Soper, “Out-of –plane microlens array fabricated using ultraviolet lighography,” Appl. Phys. Lett. 86(16), 161110 (2005).
    [Crossref]
  15. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [Crossref] [PubMed]
  16. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
    [Crossref]
  17. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
    [Crossref]
  18. K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct Writing of Microlenses in Polycarbonate with Excimer Laser Ablation,” Appl. Opt. 42(31), 6349–6359 (2003).
    [Crossref] [PubMed]
  19. H. Liu, F. Chen, X. H. Wang, Q. Yang, D. S. Zhang, J. H. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
    [Crossref]
  20. D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
    [Crossref]
  21. J. L. Yong, F. Chen, Q. Yang, G. Q. Du, H. Bian, D. S. Zhang, J. H. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
    [Crossref] [PubMed]
  22. F. Chen, H. W. Liu, Q. Yang, X. H. Wang, C. Hou, H. Bian, W. W. Liang, J. H. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref] [PubMed]
  23. S. G. He, F. Chen, K. Liu, Q. Yang, H. W. Liu, H. Bian, X. W. Meng, C. Shan, J. H. Si, Y. L. Zhao, and X. Hou, “Fabrication of three-dimensional helical microchannels with arbitrary length and uniform diameter inside fused silica,” Opt. Lett. 37(18), 3825–3827 (2012).
    [Crossref] [PubMed]
  24. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser & Photonics Rev. 4(1), 123–143 (2010).
    [Crossref]
  25. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

J. L. Yong, F. Chen, Q. Yang, G. Q. Du, H. Bian, D. S. Zhang, J. H. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (1)

2010 (3)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser & Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

F. Chen, H. W. Liu, Q. Yang, X. H. Wang, C. Hou, H. Bian, W. W. Liang, J. H. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

2009 (1)

H. Liu, F. Chen, X. H. Wang, Q. Yang, D. S. Zhang, J. H. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[Crossref]

2008 (2)

C. Y. Wu, T. H. Chiang, and C. C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express 16(24), 19978–19986 (2008).
[Crossref] [PubMed]

M. Ashral, C. Gupta, F. Chollet, S. V. Springham, and R. S. Rawat, “Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder,” Opt. Lasers Eng. 46(10), 711–720 (2008).
[Crossref]

2007 (2)

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
[Crossref] [PubMed]

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

2006 (2)

S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
[Crossref] [PubMed]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

2005 (1)

R. Yang, W. Wang, and S. A. Soper, “Out-of –plane microlens array fabricated using ultraviolet lighography,” Appl. Phys. Lett. 86(16), 161110 (2005).
[Crossref]

2003 (2)

2002 (1)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[Crossref]

2001 (1)

1999 (1)

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

Arif, R. A.

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Arnold, C. B.

Ashral, M.

M. Ashral, C. Gupta, F. Chollet, S. V. Springham, and R. S. Rawat, “Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder,” Opt. Lasers Eng. 46(10), 711–720 (2008).
[Crossref]

Baets, R.

Bian, H.

Chang, J. Y.

Chang, S. I.

Charbon, E.

Chen, F.

Chen, Q. D.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

Chiang, T. H.

Chollet, F.

M. Ashral, C. Gupta, F. Chollet, S. V. Springham, and R. S. Rawat, “Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder,” Opt. Lasers Eng. 46(10), 711–720 (2008).
[Crossref]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser & Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Chronis, N.

Crozier, K.

Du, G. Q.

J. L. Yong, F. Chen, Q. Yang, G. Q. Du, H. Bian, D. S. Zhang, J. H. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Ee, Y. K.

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Fang, H. H.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[Crossref]

Gilchrist, J. F.

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Gupta, C.

M. Ashral, C. Gupta, F. Chollet, S. V. Springham, and R. S. Rawat, “Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder,” Opt. Lasers Eng. 46(10), 711–720 (2008).
[Crossref]

He, S. G.

Hong, M. H.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser & Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Hou, C.

Hou, X.

Hsu, C. C.

Hwang, S. Y.

J. Lim, M. Jung, S. Y. Hwang, and S. Kang, “Development of optical system with rotational misalignment adjustment for multi- optical-probe confocal microscopy,” J. Vac. Sci. Technol. B  30(6), 06F702 (2012).

Jeong, K. H.

Jung, M.

J. Lim, M. Jung, S. Y. Hwang, and S. Kang, “Development of optical system with rotational misalignment adjustment for multi- optical-probe confocal microscopy,” J. Vac. Sci. Technol. B  30(6), 06F702 (2012).

Juodkazis, S.

Kang, S.

J. Lim, M. Jung, S. Y. Hwang, and S. Kang, “Development of optical system with rotational misalignment adjustment for multi- optical-probe confocal microscopy,” J. Vac. Sci. Technol. B  30(6), 06F702 (2012).

Kim, H.

Kim, J. J.

Kim, M. J.

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[Crossref]

Kumar, A. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Kumnorkaew, P.

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Kwon, Y. S.

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

Lan, H. C.

Lee, B. K.

Lee, L. P.

Leo, K.

M. Thomschke, S. Reineke, B. L. Lüssem, and K. Leo, “Highly Efficient White Top-Emitting Organic Light-Emitting Diodes Comprising Laminated Microlens Films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Liang, W. W.

Lim, C. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Lim, J.

J. Lim, M. Jung, S. Y. Hwang, and S. Kang, “Development of optical system with rotational misalignment adjustment for multi- optical-probe confocal microscopy,” J. Vac. Sci. Technol. B  30(6), 06F702 (2012).

Lin, Y.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Liu, G. L.

Liu, H.

H. Liu, F. Chen, X. H. Wang, Q. Yang, D. S. Zhang, J. H. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[Crossref]

Liu, H. W.

Liu, K.

Lu, J.

Luk’yanchuk, B. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Lüssem, B. L.

M. Thomschke, S. Reineke, B. L. Lüssem, and K. Leo, “Highly Efficient White Top-Emitting Organic Light-Emitting Diodes Comprising Laminated Microlens Films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Marcinkevicius, A.

Matsuo, S.

Meng, X. W.

Misawa, H.

Miwa, M.

Naessens, K.

Nishii, J. J.

Niu, L. G.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[Crossref]

Orth, A.

Ottevaere, H.

Pan, J. W.

Park, E. H.

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

Pavia, J. M.

Qu, P. B.

Rahman, M.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Rawat, R. S.

M. Ashral, C. Gupta, F. Chollet, S. V. Springham, and R. S. Rawat, “Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder,” Opt. Lasers Eng. 46(10), 711–720 (2008).
[Crossref]

Reineke, S.

M. Thomschke, S. Reineke, B. L. Lüssem, and K. Leo, “Highly Efficient White Top-Emitting Organic Light-Emitting Diodes Comprising Laminated Microlens Films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Sanchez, E. A.

Shan, C.

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser & Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Shin, D. H.

Si, J. H.

Song, J. F.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

Soper, S. A.

R. Yang, W. Wang, and S. A. Soper, “Out-of –plane microlens array fabricated using ultraviolet lighography,” Appl. Phys. Lett. 86(16), 161110 (2005).
[Crossref]

Springham, S. V.

M. Ashral, C. Gupta, F. Chollet, S. V. Springham, and R. S. Rawat, “Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder,” Opt. Lasers Eng. 46(10), 711–720 (2008).
[Crossref]

Su, G. D. J.

Sun, H. B.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

Sun, W. S.

Tansu, N.

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Thienpont, H.

Thomschke, M.

M. Thomschke, S. Reineke, B. L. Lüssem, and K. Leo, “Highly Efficient White Top-Emitting Organic Light-Emitting Diodes Comprising Laminated Microlens Films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Van Daele, P.

Waldmann, M.

Wang, C. M.

Wang, R.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

Wang, W.

R. Yang, W. Wang, and S. A. Soper, “Out-of –plane microlens array fabricated using ultraviolet lighography,” Appl. Phys. Lett. 86(16), 161110 (2005).
[Crossref]

Wang, X. H.

F. Chen, H. W. Liu, Q. Yang, X. H. Wang, C. Hou, H. Bian, W. W. Liang, J. H. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

H. Liu, F. Chen, X. H. Wang, Q. Yang, D. S. Zhang, J. H. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[Crossref]

Wang, Y. Q.

Watanabe, M.

Wei, H. C.

Wolf, M.

Wu, C. Y.

Wu, D.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

Wu, S. Z.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

Xie, Q.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Yang, Q.

Yang, R.

R. Yang, W. Wang, and S. A. Soper, “Out-of –plane microlens array fabricated using ultraviolet lighography,” Appl. Phys. Lett. 86(16), 161110 (2005).
[Crossref]

Yong, J. L.

J. L. Yong, F. Chen, Q. Yang, G. Q. Du, H. Bian, D. S. Zhang, J. H. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Yoon, J. B.

Yun, F.

J. L. Yong, F. Chen, Q. Yang, G. Q. Du, H. Bian, D. S. Zhang, J. H. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Zhang, D. S.

J. L. Yong, F. Chen, Q. Yang, G. Q. Du, H. Bian, D. S. Zhang, J. H. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

H. Liu, F. Chen, X. H. Wang, Q. Yang, D. S. Zhang, J. H. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[Crossref]

Zhao, Y. L.

ACS Appl. Mater. Interfaces (1)

J. L. Yong, F. Chen, Q. Yang, G. Q. Du, H. Bian, D. S. Zhang, J. H. Si, F. Yun, and X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 0311109 (2010).
[Crossref]

R. Yang, W. Wang, and S. A. Soper, “Out-of –plane microlens array fabricated using ultraviolet lighography,” Appl. Phys. Lett. 86(16), 161110 (2005).
[Crossref]

Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

J. Display Technol. (1)

J. Vac. Sci. Technol. (1)

J. Lim, M. Jung, S. Y. Hwang, and S. Kang, “Development of optical system with rotational misalignment adjustment for multi- optical-probe confocal microscopy,” J. Vac. Sci. Technol. B  30(6), 06F702 (2012).

Laser & Photonics Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser & Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Microelectron. Eng. (1)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[Crossref]

Nano Lett. (1)

M. Thomschke, S. Reineke, B. L. Lüssem, and K. Leo, “Highly Efficient White Top-Emitting Organic Light-Emitting Diodes Comprising Laminated Microlens Films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Liu, F. Chen, X. H. Wang, Q. Yang, D. S. Zhang, J. H. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[Crossref]

Opt. Express (7)

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[Crossref] [PubMed]

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
[Crossref] [PubMed]

P. B. Qu, F. Chen, H. W. Liu, Q. Yang, J. Lu, J. H. Si, Y. Q. Wang, and X. Hou, “A simple route to fabricate artificial compound eye structures,” Opt. Express 20(5), 5775–5782 (2012).
[Crossref] [PubMed]

C. Y. Wu, T. H. Chiang, and C. C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express 16(24), 19978–19986 (2008).
[Crossref] [PubMed]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref] [PubMed]

A. Orth and K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express 20(12), 13522–13531 (2012).
[Crossref] [PubMed]

F. Chen, H. W. Liu, Q. Yang, X. H. Wang, C. Hou, H. Bian, W. W. Liang, J. H. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

M. Ashral, C. Gupta, F. Chollet, S. V. Springham, and R. S. Rawat, “Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder,” Opt. Lasers Eng. 46(10), 711–720 (2008).
[Crossref]

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of fabrication process of MLAs: (a) laser irradiate caters on silica glass; (b) HF wet etching process; (c) and (d) show the replication process of convex MLAs on PMMA or PDMS.
Fig. 2
Fig. 2 The formation process of MLAs (a) The SEM image of a single laser irradiated crater; (b) The morphology of the micro concave structure after a 30-minutes wet etching; (c) and (d) show the square-shaped craters array forming square-shaped microlens array; (e) The optical microscope (OM) image of fabricated concave MLAs with excellent precision and uniformity; (f) The digital photo of the fabricated MLA.
Fig. 3
Fig. 3 The characterization of square-shaped concave MLAs. (a) and (b) SEM images of square-shaped concave MLAs at different angles and different magnifications; (c) and (d) show the 3D morphologies and cross-sectional profiles of square-shaped concave MLAs measured by CLSM.
Fig. 4
Fig. 4 The characterization of replicated square-shaped convex MLAs. (a) and (b) show the SEM images of convex MLAs at different magnifications; (c) and (d) show the 3D morphologies of convex MLAs; (e) the cross-sectional profiles of convex MLAs.
Fig. 5
Fig. 5 (a) and (b) show the results of the optical simulation experiment of the square-shaped spherical MLAs by using Tracepro; (c) the bright focal spots observed by OM; (d) the letter “A” generated through replicated convex MLAs. The insertion represents the magnified images.
Fig. 6
Fig. 6 Relationship between the sample deviation and the profile of laser irradiated craters. (a) and (b) show the depth and diameter of the craters depend on the focal plane deviation, respectively.
Fig. 7
Fig. 7 (a) the OM images of craters array before HF wet etching; (b) the OM images of craters array after etching in 5% HF for 20 minutes.

Metrics