Abstract

We demonstrate an optically controlled waveplate at ~1323 nm using the 5S1/2-5P1/2-6S1/2 ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam, while the upper leg represents the signal beam. We show that we can place the signal beam in any arbitrary polarization state with a suitable choice of polarization of the control beam. Specifically, we demonstrate a differential phase retardance of ~180 degrees between the two circularly polarized components of a linearly polarized signal beam. We also demonstrate that the system can act as a Quarter Wave plate. The optical activity responsible for the phase retardation process is explained in terms of selection rules involving the Zeeman sublevels. As such, the system can be used to realize a fast Stokesmetric imaging system with a speed of ~3 MHz. When implemented using a tapered nano fiber embedded in a vapor cell, this system can be used to realize an ultra-low power all-optical switch as well as a Quantum Zeno Effect based all-optical logic gate by combining it with an optically controlled polarizer, previously demonstrated by us. We present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, using a novel algorithm recently developed by us for efficient computation of the evolution of an arbitrary large scale quantum system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic

Subramanian Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M.S. Shahriar
Opt. Express 21(21) 24514-24531 (2013)

High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms

Subramanian Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar
Opt. Express 20(13) 13798-13809 (2012)

High-speed modulation in ladder transitions in Rb atoms using high-pressure buffer gas

Subramanian Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar
Opt. Express 23(9) 11470-11482 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
    [Crossref]
  2. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
    [Crossref]
  3. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
    [Crossref] [PubMed]
  4. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [Crossref] [PubMed]
  5. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010).
    [Crossref] [PubMed]
  6. S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012).
    [Crossref] [PubMed]
  7. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
    [Crossref] [PubMed]
  8. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
    [Crossref] [PubMed]
  9. S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “Optically controlled polarizer using a ladder transition for high speed Stokesmetric imaging and quantum Zeno effect based optical logic,” Opt. Express 21(21), 24514–24531 (2013).
    [Crossref] [PubMed]
  10. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
    [Crossref]
  11. P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3(4), 225–229 (2009).
    [Crossref]
  12. Z. K. Lee, D. Heiman, H. Wang, C. G. Fonstad, M. Sundaram, and A. C. Gossard, “Faraday-Stark optoelectronic effect,” Appl. Phys. Lett. 69(24), 3731–3734 (1996).
    [Crossref]
  13. W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18(15), 577–580 (1967).
    [Crossref]
  14. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
    [Crossref]
  15. M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
    [Crossref]
  16. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
    [Crossref]
  17. S. Weilandy, L. Alexander, and L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).
    [Crossref]
  18. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [Crossref] [PubMed]
  19. K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41(22), 225503 (2008).
    [Crossref]
  20. R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
    [Crossref]
  21. N. Hombo, S. Taniguchi, S. Sugimura, K. Fujita, and M. Mitsunaga, “Electromagnetically induced polarization rotation in Na vapor,” J. Opt. Soc. Am. B 29(7), 1717–1721 (2012).
    [Crossref]
  22. P. Siddons, C. S. Adams, and I. G. Hughes, “Optical control of Faraday rotation in hot Rb vapor,” Phys. Rev. A 81(4), 043838 (2010).
    [Crossref]
  23. P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
    [Crossref]
  24. C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37(1), 118–120 (2012).
    [Crossref] [PubMed]
  25. M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
    [Crossref]
  26. R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
    [Crossref]
  27. T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
    [Crossref]
  28. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  29. X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, and M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
    [Crossref]
  30. X. Liu, A. Heifetz, S. C. Tseng, and M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
    [Crossref] [PubMed]
  31. S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34(22), L749–L756 (2001).
    [Crossref]
  32. S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
    [Crossref]
  33. D. A. Steck, “Alkali D line data,” http://steck.us/alkalidata/rubidium87numbers.pdf .
  34. H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 pm and 1.5 pm,” IEEE Photon. Technol. Lett. 4(11), 1307–1309 (1992).
    [Crossref]
  35. H. S. Moon, “Frequency stabilization of a 1.3 μm laser diode using double resonance optical pumping in the 5P3/2-6S1/2 transition of Rb atoms,” Appl. Opt. 47(8), 1097–1102 (2008).
    [Crossref] [PubMed]
  36. H. D. Do, M. S. Heo, G. Moon, H. R. Noh, and W. Jhe, “Analytic calculation of the lineshapes in polarization spectroscopy of rubidium,” Opt. Commun. 281(15-16), 4042–4047 (2008).
    [Crossref]
  37. H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77(3), 032513 (2008).
    [Crossref]
  38. M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

2014 (1)

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

2013 (1)

2012 (4)

2011 (2)

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, and M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[Crossref]

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[Crossref] [PubMed]

2010 (3)

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010).
[Crossref] [PubMed]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

P. Siddons, C. S. Adams, and I. G. Hughes, “Optical control of Faraday rotation in hot Rb vapor,” Phys. Rev. A 81(4), 043838 (2010).
[Crossref]

2009 (6)

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[Crossref]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
[Crossref]

X. Liu, A. Heifetz, S. C. Tseng, and M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[Crossref] [PubMed]

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3(4), 225–229 (2009).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

2008 (5)

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

H. S. Moon, “Frequency stabilization of a 1.3 μm laser diode using double resonance optical pumping in the 5P3/2-6S1/2 transition of Rb atoms,” Appl. Opt. 47(8), 1097–1102 (2008).
[Crossref] [PubMed]

H. D. Do, M. S. Heo, G. Moon, H. R. Noh, and W. Jhe, “Analytic calculation of the lineshapes in polarization spectroscopy of rubidium,” Opt. Commun. 281(15-16), 4042–4047 (2008).
[Crossref]

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77(3), 032513 (2008).
[Crossref]

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41(22), 225503 (2008).
[Crossref]

2006 (1)

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
[Crossref]

2005 (1)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

2004 (1)

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

2002 (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

2001 (1)

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34(22), L749–L756 (2001).
[Crossref]

1998 (2)

S. Weilandy, L. Alexander, and L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).
[Crossref]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

1996 (2)

Z. K. Lee, D. Heiman, H. Wang, C. G. Fonstad, M. Sundaram, and A. C. Gossard, “Faraday-Stark optoelectronic effect,” Appl. Phys. Lett. 69(24), 3731–3734 (1996).
[Crossref]

S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
[Crossref]

1995 (2)

T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
[Crossref]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

1993 (1)

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

1992 (1)

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 pm and 1.5 pm,” IEEE Photon. Technol. Lett. 4(11), 1307–1309 (1992).
[Crossref]

1976 (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
[Crossref]

1967 (1)

W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18(15), 577–580 (1967).
[Crossref]

Abel, R. P.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
[Crossref]

Adams, C. S.

C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37(1), 118–120 (2012).
[Crossref] [PubMed]

P. Siddons, C. S. Adams, and I. G. Hughes, “Optical control of Faraday rotation in hot Rb vapor,” Phys. Rev. A 81(4), 043838 (2010).
[Crossref]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
[Crossref]

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3(4), 225–229 (2009).
[Crossref]

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34(22), L749–L756 (2001).
[Crossref]

Alexander, L.

S. Weilandy, L. Alexander, and L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).
[Crossref]

Andrews, L. R.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

Badger, S. D.

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34(22), L749–L756 (2001).
[Crossref]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Bason, M. G.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
[Crossref]

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

Bell, N. C.

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3(4), 225–229 (2009).
[Crossref]

Bhagwat, A. R.

Boucher, R.

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Breton, M.

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Budker, D.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Busch, H. C.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

Cai, Y.

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3(4), 225–229 (2009).
[Crossref]

Carr, C.

Chipman, R. A.

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

Crepaz, H.

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

Cyr, N.

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

de Echaniz, S. R.

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

Do, H. D.

H. D. Do, M. S. Heo, G. Moon, H. R. Noh, and W. Jhe, “Analytic calculation of the lineshapes in polarization spectroscopy of rubidium,” Opt. Commun. 281(15-16), 4042–4047 (2008).
[Crossref]

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77(3), 032513 (2008).
[Crossref]

Drampyan, R.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[Crossref]

Eschner, J.

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

Fonstad, C. G.

Z. K. Lee, D. Heiman, H. Wang, C. G. Fonstad, M. Sundaram, and A. C. Gossard, “Faraday-Stark optoelectronic effect,” Appl. Phys. Lett. 69(24), 3731–3734 (1996).
[Crossref]

Fujita, K.

Gaeta, A. L.

Gaeta, L.

S. Weilandy, L. Alexander, and L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).
[Crossref]

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

Gawlik, W.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[Crossref]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Gossard, A. C.

Z. K. Lee, D. Heiman, H. Wang, C. G. Fonstad, M. Sundaram, and A. C. Gossard, “Faraday-Stark optoelectronic effect,” Appl. Phys. Lett. 69(24), 3731–3734 (1996).
[Crossref]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Hammerer, K.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Han, Y.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
[Crossref]

Hänsch, T. W.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
[Crossref]

Happer, W.

W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18(15), 577–580 (1967).
[Crossref]

Harris, S. E.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

Heifetz, A.

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, and M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[Crossref]

X. Liu, A. Heifetz, S. C. Tseng, and M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[Crossref] [PubMed]

Heiman, D.

Z. K. Lee, D. Heiman, H. Wang, C. G. Fonstad, M. Sundaram, and A. C. Gossard, “Faraday-Stark optoelectronic effect,” Appl. Phys. Lett. 69(24), 3731–3734 (1996).
[Crossref]

Heo, M. S.

H. D. Do, M. S. Heo, G. Moon, H. R. Noh, and W. Jhe, “Analytic calculation of the lineshapes in polarization spectroscopy of rubidium,” Opt. Commun. 281(15-16), 4042–4047 (2008).
[Crossref]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Hombo, N.

Hughes, I. G.

P. Siddons, C. S. Adams, and I. G. Hughes, “Optical control of Faraday rotation in hot Rb vapor,” Phys. Rev. A 81(4), 043838 (2010).
[Crossref]

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3(4), 225–229 (2009).
[Crossref]

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34(22), L749–L756 (2001).
[Crossref]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

Jhe, W.

H. D. Do, M. S. Heo, G. Moon, H. R. Noh, and W. Jhe, “Analytic calculation of the lineshapes in polarization spectroscopy of rubidium,” Opt. Commun. 281(15-16), 4042–4047 (2008).
[Crossref]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Koschorreck, M.

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

Krishnamurthy, S.

Kubasik, M.

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

Kulatunga, P.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

Kumar, P.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[Crossref] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Lee, Z. K.

Z. K. Lee, D. Heiman, H. Wang, C. G. Fonstad, M. Sundaram, and A. C. Gossard, “Faraday-Stark optoelectronic effect,” Appl. Phys. Lett. 69(24), 3731–3734 (1996).
[Crossref]

Li, S.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
[Crossref]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Liu, X.

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, and M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[Crossref]

X. Liu, A. Heifetz, S. C. Tseng, and M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[Crossref] [PubMed]

Londero, P.

Lu, S. Y.

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Mathur, B. S.

W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18(15), 577–580 (1967).
[Crossref]

Mitchell, M. W.

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

Mitsunaga, M.

Mohapatra, A. K.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
[Crossref]

Moon, G.

H. D. Do, M. S. Heo, G. Moon, H. R. Noh, and W. Jhe, “Analytic calculation of the lineshapes in polarization spectroscopy of rubidium,” Opt. Commun. 281(15-16), 4042–4047 (2008).
[Crossref]

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77(3), 032513 (2008).
[Crossref]

Moon, H. S.

Munro, W. J.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

Napolitano, M.

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

Natarajan, V.

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41(22), 225503 (2008).
[Crossref]

Nee, S. F.

T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
[Crossref]

Nee, T.

T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
[Crossref]

Noh, H. R.

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77(3), 032513 (2008).
[Crossref]

H. D. Do, M. S. Heo, G. Moon, H. R. Noh, and W. Jhe, “Analytic calculation of the lineshapes in polarization spectroscopy of rubidium,” Opt. Commun. 281(15-16), 4042–4047 (2008).
[Crossref]

Pandey, K.

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41(22), 225503 (2008).
[Crossref]

Pati, G. S.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Peng, K. C.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
[Crossref]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Polzik, E. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

Pritchard, J. D.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
[Crossref]

Pustelny, S.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[Crossref]

Raitzsch, U.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
[Crossref]

Rochester, S. M.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Rodrigues, D. A.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

Salit, K.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[Crossref] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Salit, M.

Sasada, H.

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 pm and 1.5 pm,” IEEE Photon. Technol. Lett. 4(11), 1307–1309 (1992).
[Crossref]

Shahriar, M. S.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “Optically controlled polarizer using a ladder transition for high speed Stokesmetric imaging and quantum Zeno effect based optical logic,” Opt. Express 21(21), 24514–24531 (2013).
[Crossref] [PubMed]

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012).
[Crossref] [PubMed]

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[Crossref] [PubMed]

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, and M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[Crossref]

X. Liu, A. Heifetz, S. C. Tseng, and M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[Crossref] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Siddons, P.

P. Siddons, C. S. Adams, and I. G. Hughes, “Optical control of Faraday rotation in hot Rb vapor,” Phys. Rev. A 81(4), 043838 (2010).
[Crossref]

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3(4), 225–229 (2009).
[Crossref]

Slepkov, A. D.

Sørensen, A. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Spiller, T. P.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

Sugimura, S.

Sukenik, C. I.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

Sundaram, M.

Z. K. Lee, D. Heiman, H. Wang, C. G. Fonstad, M. Sundaram, and A. C. Gossard, “Faraday-Stark optoelectronic effect,” Appl. Phys. Lett. 69(24), 3731–3734 (1996).
[Crossref]

Taniguchi, S.

Têtu, M.

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Tremblay, P.

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Tripathi, R.

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, and M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[Crossref]

Tseng, S.

Tseng, S. C.

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, and M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[Crossref]

X. Liu, A. Heifetz, S. C. Tseng, and M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[Crossref] [PubMed]

Tu, Y.

Venkataraman, V.

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Wang, B.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
[Crossref]

Wang, H.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
[Crossref]

Z. K. Lee, D. Heiman, H. Wang, C. G. Fonstad, M. Sundaram, and A. C. Gossard, “Faraday-Stark optoelectronic effect,” Appl. Phys. Lett. 69(24), 3731–3734 (1996).
[Crossref]

Wang, Y.

Wasan, A.

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41(22), 225503 (2008).
[Crossref]

Weatherill, K. J.

C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37(1), 118–120 (2012).
[Crossref] [PubMed]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
[Crossref]

Weilandy, S.

S. Weilandy, L. Alexander, and L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).
[Crossref]

Weis, A.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Wieman, C.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
[Crossref]

Xiao, M.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
[Crossref]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

Yang, X.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
[Crossref]

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94(7), 071107 (2009).
[Crossref]

Z. K. Lee, D. Heiman, H. Wang, C. G. Fonstad, M. Sundaram, and A. C. Gossard, “Faraday-Stark optoelectronic effect,” Appl. Phys. Lett. 69(24), 3731–3734 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 pm and 1.5 pm,” IEEE Photon. Technol. Lett. 4(11), 1307–1309 (1992).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

J. Mod. Opt. (2)

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (2)

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41(22), 225503 (2008).
[Crossref]

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34(22), L749–L756 (2001).
[Crossref]

Nat. Photonics (1)

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3(4), 225–229 (2009).
[Crossref]

Opt. Commun. (3)

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, and M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[Crossref]

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

H. D. Do, M. S. Heo, G. Moon, H. R. Noh, and W. Jhe, “Analytic calculation of the lineshapes in polarization spectroscopy of rubidium,” Opt. Commun. 281(15-16), 4042–4047 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (5)

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[Crossref]

P. Siddons, C. S. Adams, and I. G. Hughes, “Optical control of Faraday rotation in hot Rb vapor,” Phys. Rev. A 81(4), 043838 (2010).
[Crossref]

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74(3), 033821 (2006).
[Crossref]

M. Kubasik, M. Koschorreck, M. Napolitano, S. R. de Echaniz, H. Crepaz, J. Eschner, E. S. Polzik, and M. W. Mitchell, “Polarization-based light-atom quantum interface with an all-optical trap,” Phys. Rev. A 79(4), 043815 (2009).
[Crossref]

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77(3), 032513 (2008).
[Crossref]

Phys. Rev. Lett. (7)

S. Weilandy, L. Alexander, and L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).
[Crossref]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18(15), 577–580 (1967).
[Crossref]

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
[Crossref]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
[Crossref]

Rev. Mod. Phys. (2)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Science (1)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

Other (1)

D. A. Steck, “Alkali D line data,” http://steck.us/alkalidata/rubidium87numbers.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of an optically controlled polarization rotator using circularly polarized control beam
Fig. 2
Fig. 2 Generalized schematic of an optically controlled waveplate using control beam of arbitrary polarization
Fig. 3
Fig. 3 Model used for numerical computation. See text for more details.
Fig. 4
Fig. 4 Experimental Set-up
Fig. 5
Fig. 5 Ideal Output seen by detector for different values of a) ϕ d with α + = α - = 0 and b) α - with ϕ d = α + = 0
Fig. 6
Fig. 6 Observed experimental data showing differential phase rotation of (a) ~160° and (c) ~180° and almost no differential absorption at certain detunings. (b) transmission through orthogonal polarizer as probe is scanned
Fig. 7
Fig. 7 Numerical simulation of 15-level system showing phase shift and attenuation of the RCP and LCP parts of the probe beam as a function of probe detuning. Here δc~1.2 GHz, natom~1012/cm3 and Ωmin = 100Γa.
Fig. 8
Fig. 8 System behaving as Quarter Wave Plate using pump which is linearly polarized at 45° (a) Experimental result (b) Expected detector output for linear and circular polarization of the probe

Tables (1)

Tables Icon

Table 1 Effective Decay rates between excited states and ground states

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

p ^ = i [ ( α * + β * ) ( α σ ^ + β σ ^ + ) e i ϕ + ( α β ) ( α * σ ^ + + β * σ ^ ) ] / 2   =   i [ ( ( | α |   2 + β * α ) e i ϕ + ( | β |   2 β * α ) ) σ ^ + ( ( | β |   2 + α * β ) e i ϕ + ( | α |   2 α * β ) ) σ ^ + ] / 2
  E o u t = E i n + e ( α + + j ϕ + ) σ ^ + + E i n e ( α + j ϕ ) σ ^
E o u t = i E 0 2 e ( α + j ϕ ) [ e ( α d + j ϕ d ) + 1 i ( e ( α d + j ϕ d ) + 1 ) ]
J L C R = [ e i θ / 2 0 0 e i θ / 2 ]
R ( 45 0 ) = [ 1 / 2 1 / 2 1 / 2 1 / 2 ]
J Y P o l =   [ 0 0 0 1 ]
  J o u t = J Y P o l *   J L C R 45 * E o u t
I = E 0 2 4 e 2 α ( 1 + e 2 α d +   ( e 2 α d 1 ) sin θ + 2 e α d cos   ϕ d cos θ )
y = e α d = I 2 2 ( C 1 C 3 S 3 1 ) + I 1 I 2 ( C 3 C 2 S 2 3 ) + I 2 I 3 ( C 2 C 1 S 1 2 ) I 2 2 ( C 3 C 1 S 3 1 ) + I 1 I 2 ( C 2 C 3 S 2 3 ) + I 2 I 3 ( C 1 C 2 S 1 2 )
cos ϕ d =   ( I 2 I 1 ) ( y + 1 y ) + ( I 2 S 1 I 1 S 2 ) ( 1 y y ) 2   ( I 1 C 2 I 2 C 1 )
ϕ + = k L β + 2 R e ( a 13 , 4 ρ 13 , 4 + a 14 , 5 ρ 14 , 5 + a 12 , 7 ρ 12 , 7 + a 13 , 8 ρ 13 , 8 + a 14 , 9 ρ 14 , 9 )
ϕ = k L β 2 R e ( a 12 , 5 ρ 12 , 5 + a 13 , 6 ρ 13 , 6 + a 12 , 9 ρ 12 , 9 + a 13 , 10 ρ 13 , 10 + a 14 , 11 ρ 14 , 11 )
α + =   k L β + I m ( a 13 , 4 ρ 13 , 4 + a 14 , 5 ρ 14 , 5 + a 12 , 7 ρ 12 , 7 + a 13 , 8 ρ 13 , 8 + a 14 , 9 ρ 14 , 9 ) / 2
α =   k L β I m ( a 12 , 5 ρ 12 , 5 + a 13 , 6 ρ 13 , 6 + a 12 , 9 ρ 12 , 9 + a 13 , 10 ρ 13 , 10 + a 14 , 11 ρ 14 , 11 ) / 2
β ± = b m i n 2 3 n a t o m Γ λ 3   4 π 2 Ω m i n

Metrics