Abstract

We analyze two nonlinear optofluidic processes where nonlinearity is induced by the interplay between optical field and liquid interface. Specifically, guided optical waves generate radiation pressure on the liquid interface, which can in turn distort the liquid interface and modify the properties of the optical field. In the first example, we discuss the feasibility of nonlinear optofluidic solitons, where optical field is governed by the nonlinear Schrödinger equation and nonlinearity is effectively determined by liquid properties. Then, we analyze a nonlinear optofluidic process associated with a high quality (Q) factor whispering gallery mode (WGM) in a liquid droplet. Similar to Kerr effects, the WGM can produce a frequency shift proportional to the WGM power. Using liquid properties that are experimentally attainable, we find that it may only take a few photons to generate measurable WGM resonance shift. Such a possibility may eventually lead to nonlinear optics at single photon energy level.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching

Mehdi Aas, Alexandr Jonáš, Alper Kiraz, Oto Brzobohatý, Jan Ježek, Zdeněk Pilát, and Pavel Zemánek
Opt. Express 21(18) 21380-21394 (2013)

Localization of light in an optical microcapillary induced by a droplet

Tabassom Hamidfar, Kirill V. Tokmakov, Brian J. Mangan, Robert S. Windeler, Artemiy V. Dmitriev, Dashiell L. P. Vitullo, Pablo Bianucci, and Michael Sumetsky
Optica 5(4) 382-388 (2018)

Asymmetric optical radiation pressure effects on liquid interfaces under intense illumination

Alexis Casner, Jean-Pierre Delville, and Iver Brevik
J. Opt. Soc. Am. B 20(11) 2355-2362 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  2. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid Nanofluidics 4(1-2), 97–105 (2008).
    [Crossref]
  3. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  4. S.-H. Kim, J.-H. Choi, S.-K. Lee, S.-H. Kim, S.-M. Yang, Y.-H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express 16(9), 6515–6527 (2008).
    [Crossref] [PubMed]
  5. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid Nanofluidics 4(1-2), 145–158 (2007).
    [Crossref]
  6. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2008).
    [Crossref] [PubMed]
  7. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
    [Crossref]
  8. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
    [Crossref] [PubMed]
  9. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
    [Crossref] [PubMed]
  10. J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82(3), 031804 (2010).
    [Crossref]
  11. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19(24), 24522–24529 (2011).
    [Crossref] [PubMed]
  12. A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science 328(5980), 812–813 (2010).
    [Crossref] [PubMed]
  13. A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30(4), 139–142 (1973).
    [Crossref]
  14. I. I. Komissarovak, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure induced deformations of a free liquid surface,” Opt. Commun. 66(1), 15–20 (1988).
    [Crossref]
  15. J.-Z. Zhang and R. K. Chang, “Shape distortion of a single water droplet by laser-induced electrostriction,” Opt. Lett. 13(10), 916–918 (1988).
    [Crossref] [PubMed]
  16. H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6(12), 2430–2437 (1989).
    [Crossref]
  17. A. Casner and J.-P. Delville, “Adaptative lensing driven by the radiation pressure of a continuous-wave laser wave upon a near-critical liquid liquid interface,” Opt. Lett. 26(18), 1418–1420 (2001).
    [Crossref] [PubMed]
  18. A. Casner, J.-P. Delville, and I. Brevik, “Asymmetric optical radiation pressure effects on liquid interfaces under intense illumination,” J. Opt. Soc. Am. B 20(11), 2355–2362 (2003).
    [Crossref]
  19. J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
    [Crossref]
  20. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun 4, 1994 (2013).
    [Crossref] [PubMed]
  21. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
    [Crossref] [PubMed]
  22. A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. 29(12), 3240–3247 (2012).
    [Crossref]
  23. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).
  24. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, Amsterdam, 2008).
  25. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).
  26. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
    [Crossref] [PubMed]
  27. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
    [Crossref]
  28. A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
    [Crossref] [PubMed]
  29. H. Leitão, A. M. Somoza, M. M. Telo da Gama, T. Sottmann, and R. Strey, “Scaling of the interfacial tension of microemulsions: A phenomenological description,” J. Chem. Phys. 105(7), 2875 (1996).
    [Crossref]
  30. H. Chraibi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects,” Eur Phys J E Soft Matter 32(1), 43–52 (2010).
    [Crossref] [PubMed]

2013 (1)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun 4, 1994 (2013).
[Crossref] [PubMed]

2012 (1)

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. 29(12), 3240–3247 (2012).
[Crossref]

2011 (1)

2010 (3)

A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science 328(5980), 812–813 (2010).
[Crossref] [PubMed]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82(3), 031804 (2010).
[Crossref]

H. Chraibi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects,” Eur Phys J E Soft Matter 32(1), 43–52 (2010).
[Crossref] [PubMed]

2009 (1)

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

2008 (4)

2007 (3)

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid Nanofluidics 4(1-2), 145–158 (2007).
[Crossref]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

2006 (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
[Crossref] [PubMed]

2005 (1)

A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
[Crossref] [PubMed]

2003 (2)

A. Casner, J.-P. Delville, and I. Brevik, “Asymmetric optical radiation pressure effects on liquid interfaces under intense illumination,” J. Opt. Soc. Am. B 20(11), 2355–2362 (2003).
[Crossref]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
[Crossref]

2001 (1)

1996 (1)

H. Leitão, A. M. Somoza, M. M. Telo da Gama, T. Sottmann, and R. Strey, “Scaling of the interfacial tension of microemulsions: A phenomenological description,” J. Chem. Phys. 105(7), 2875 (1996).
[Crossref]

1990 (1)

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[Crossref] [PubMed]

1989 (1)

1988 (2)

I. I. Komissarovak, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure induced deformations of a free liquid surface,” Opt. Commun. 66(1), 15–20 (1988).
[Crossref]

J.-Z. Zhang and R. K. Chang, “Shape distortion of a single water droplet by laser-induced electrostriction,” Opt. Lett. 13(10), 916–918 (1988).
[Crossref] [PubMed]

1973 (1)

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30(4), 139–142 (1973).
[Crossref]

Arquis, E.

H. Chraibi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects,” Eur Phys J E Soft Matter 32(1), 43–52 (2010).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30(4), 139–142 (1973).
[Crossref]

Bahl, G.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun 4, 1994 (2013).
[Crossref] [PubMed]

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[Crossref] [PubMed]

Bhave, S. A.

Blot, C.

A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
[Crossref] [PubMed]

Brasselet, E.

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

Brevik, I.

Buck, J. R.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
[Crossref]

Carmon, T.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun 4, 1994 (2013).
[Crossref] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

Casner, A.

Chang, R. K.

Cho, A.

A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science 328(5980), 812–813 (2010).
[Crossref] [PubMed]

Choi, J.-H.

Chraibi, H.

H. Chraibi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects,” Eur Phys J E Soft Matter 32(1), 43–52 (2010).
[Crossref] [PubMed]

Chraïbi, H.

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

Daillant, J.

A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
[Crossref] [PubMed]

Dale, P. S.

Datta, A.

A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
[Crossref] [PubMed]

Delville, J.-P.

H. Chraibi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects,” Eur Phys J E Soft Matter 32(1), 43–52 (2010).
[Crossref] [PubMed]

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

A. Casner, J.-P. Delville, and I. Brevik, “Asymmetric optical radiation pressure effects on liquid interfaces under intense illumination,” J. Opt. Soc. Am. B 20(11), 2355–2362 (2003).
[Crossref]

A. Casner and J.-P. Delville, “Adaptative lensing driven by the radiation pressure of a continuous-wave laser wave upon a near-critical liquid liquid interface,” Opt. Lett. 26(18), 1418–1420 (2001).
[Crossref] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30(4), 139–142 (1973).
[Crossref]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Fan, X.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun 4, 1994 (2013).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2008).
[Crossref] [PubMed]

Hill, S. C.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[Crossref] [PubMed]

Hofer, J.

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82(3), 031804 (2010).
[Crossref]

Hossein-Zadeh, M.

Issenmann, B.

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

Jonáš, A.

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. 29(12), 3240–3247 (2012).
[Crossref]

Karadag, Y.

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. 29(12), 3240–3247 (2012).
[Crossref]

Kim, K. H.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun 4, 1994 (2013).
[Crossref] [PubMed]

Kim, S.-H.

Kimble, H. J.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
[Crossref]

Kippenberg, T. J.

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82(3), 031804 (2010).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

Kiraz, A.

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. 29(12), 3240–3247 (2012).
[Crossref]

Komissarovak, I. I.

I. I. Komissarovak, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure induced deformations of a free liquid surface,” Opt. Commun. 66(1), 15–20 (1988).
[Crossref]

Kundu, S.

A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
[Crossref] [PubMed]

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[Crossref] [PubMed]

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6(12), 2430–2437 (1989).
[Crossref]

Lasseux, D.

H. Chraibi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects,” Eur Phys J E Soft Matter 32(1), 43–52 (2010).
[Crossref] [PubMed]

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

Lee, S.-K.

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun 4, 1994 (2013).
[Crossref] [PubMed]

Lee, Y.-H.

Leitão, H.

H. Leitão, A. M. Somoza, M. M. Telo da Gama, T. Sottmann, and R. Strey, “Scaling of the interfacial tension of microemulsions: A phenomenological description,” J. Chem. Phys. 105(7), 2875 (1996).
[Crossref]

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[Crossref] [PubMed]

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6(12), 2430–2437 (1989).
[Crossref]

Levy, U.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid Nanofluidics 4(1-2), 97–105 (2008).
[Crossref]

Li, Z.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid Nanofluidics 4(1-2), 145–158 (2007).
[Crossref]

Liu, J.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun 4, 1994 (2013).
[Crossref] [PubMed]

Luzet, D.

A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
[Crossref] [PubMed]

Mestre, M.

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. 29(12), 3240–3247 (2012).
[Crossref]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Ostrovskaya, G. V.

I. I. Komissarovak, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure induced deformations of a free liquid surface,” Opt. Commun. 66(1), 15–20 (1988).
[Crossref]

Poon, K. L.

Psaltis, D.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid Nanofluidics 4(1-2), 145–158 (2007).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Regrency, P.

Robert de Saint Vincent, M.

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

Rokhsari, H.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

Sanyal, M. K.

A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
[Crossref] [PubMed]

Schliesser, A.

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82(3), 031804 (2010).
[Crossref]

Schroll, R. D.

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

Seassal, C.

Shamai, R.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid Nanofluidics 4(1-2), 97–105 (2008).
[Crossref]

Shedova, E. N.

I. I. Komissarovak, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure induced deformations of a free liquid surface,” Opt. Commun. 66(1), 15–20 (1988).
[Crossref]

Somoza, A. M.

H. Leitão, A. M. Somoza, M. M. Telo da Gama, T. Sottmann, and R. Strey, “Scaling of the interfacial tension of microemulsions: A phenomenological description,” J. Chem. Phys. 105(7), 2875 (1996).
[Crossref]

Sottmann, T.

H. Leitão, A. M. Somoza, M. M. Telo da Gama, T. Sottmann, and R. Strey, “Scaling of the interfacial tension of microemulsions: A phenomenological description,” J. Chem. Phys. 105(7), 2875 (1996).
[Crossref]

Sridaran, S.

Strey, R.

H. Leitão, A. M. Somoza, M. M. Telo da Gama, T. Sottmann, and R. Strey, “Scaling of the interfacial tension of microemulsions: A phenomenological description,” J. Chem. Phys. 105(7), 2875 (1996).
[Crossref]

Struth, B.

A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
[Crossref] [PubMed]

Suter, J. D.

Tallur, S.

Telo da Gama, M. M.

H. Leitão, A. M. Somoza, M. M. Telo da Gama, T. Sottmann, and R. Strey, “Scaling of the interfacial tension of microemulsions: A phenomenological description,” J. Chem. Phys. 105(7), 2875 (1996).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
[Crossref] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

Viktorovitch, P.

White, I. M.

Wunenburger, R.

H. Chraibi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects,” Eur Phys J E Soft Matter 32(1), 43–52 (2010).
[Crossref] [PubMed]

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, S.-M.

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[Crossref] [PubMed]

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6(12), 2430–2437 (1989).
[Crossref]

Zhang, J.-Z.

Zhang, W. W.

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

Zhu, H.

Eur Phys J E Soft Matter (1)

H. Chraibi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects,” Eur Phys J E Soft Matter 32(1), 43–52 (2010).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

J. Chem. Phys. (1)

H. Leitão, A. M. Somoza, M. M. Telo da Gama, T. Sottmann, and R. Strey, “Scaling of the interfacial tension of microemulsions: A phenomenological description,” J. Chem. Phys. 105(7), 2875 (1996).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J.-P. Delville, M. Robert de Saint Vincent, R. D. Schroll, H. Chraïbi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, “Laser microfluidics: fluid actuation by light,” J. Opt. A, Pure Appl. Opt. 11(3), 034015 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. 29(12), 3240–3247 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

Microfluid Nanofluidics (2)

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid Nanofluidics 4(1-2), 97–105 (2008).
[Crossref]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid Nanofluidics 4(1-2), 145–158 (2007).
[Crossref]

Nat Commun (1)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun 4, 1994 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

I. I. Komissarovak, G. V. Ostrovskaya, and E. N. Shedova, “Light pressure induced deformations of a free liquid surface,” Opt. Commun. 66(1), 15–20 (1988).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (3)

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82(3), 031804 (2010).
[Crossref]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[Crossref] [PubMed]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot, and B. Struth, “Dramatic enhancement of capillary wave fluctuations of a decorated water surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041604 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30(4), 139–142 (1973).
[Crossref]

Science (2)

A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science 328(5980), 812–813 (2010).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

Other (3)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, Amsterdam, 2008).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) An optofluidic soliton formed from a self-guided optical wave that is confined within a liquid bulge formed through radiation pressure. (b) A liquid droplet that contains a high-Q WGM circulating along the equator. The radiation pressure of the WGM forms the bulge, which in turn shifts the WGM resonance frequency.
Fig. 2
Fig. 2 (a) Illustration of an optofluidic soliton. The structure contains two liquids (refractive indices n 1 and n 2 ) and air ( n 3 = 1 ). The thickness of the waveguide is h 0 in the absence of optical field. The radiation pressure of the guided optical signal produces the bulge shown in the figure. The thickness of the bulge that serves as the waveguide core is denoted as h ( x ) = h 0 + Δ h ( x ) . (b) The effective index of the asymmetric dielectric waveguide defined in (a) as a function of the core layer thickness h ( x ) . The waveguide parameters are n 1 = 1.5 , n 2 = 1.5043 , and n 3 = 1 . The operation wavelength is 1 μ m . The exact solution (blue line) is calculated using standard waveguide theory. The dashed black line represents linear fitting of the exact solution in the range of 2.5   μ m < h < 4   μ m . The slope gives n / h = 1 × 10 3 μ m 1 .
Fig. 3
Fig. 3 (a) A liquid droplet with a high-Q WGM circulating near its equator. The radiation pressure of the WGM deforms the original spherical droplet (the blue circle) and generates the bulge (the solid black line), which is approximated as an oblate spheroid (the dashed black line). The normalized equator radius x e is defined as the ratio of the spheroid radius at the equator ( a + Δ R ) and the radius of the original sphere a . (b) The integral F ( x e ) = 0 π a κ ¯ ( x e , θ ) Y 20 ( θ ) sin θ d θ (blue circles) as a function of the normalized equator radius x e . κ ¯ ( x e , θ ) is given in Eq. (12). The dimensionless constant Γ σ is extracted using Eq. (14) and least square fitting (dashed red line).
Fig. 4
Fig. 4 (a) The radial dependence of | E | 2 of a fundamental TE mode ( l = 257) in a spherical droplet with radius a = 50 μ m . We assume | E s u r f p e a k | = 1 and take θ = π / 2 and ϕ = 0 . (b) The angular dependence of | E | 2 for the WGM in (a). The value of | E | 2 is evaluated over the droplet surface, with ϕ = 0 . Due to our normalization scheme, the curve is also f l m ( θ ) . (c) The power flux of the WGM in (a) within the ϕ = 0 plane. Only the e ϕ component of the Poynting vector is shown. The white circle represents the droplet surface. (d) The value of Γ θ l m for the fundamental TE mode | l l in droplets with different radius. The sphere radii and WGM parameters are listed in Table 1. The Γ θ l m values (blue circles) are obtained numerically using Eq. (17) and simply connected together using the dashed line.
Fig. 5
Fig. 5 (a) Radiation pressure induced droplet deformation ( Δ R / a ) in droplets with different radii (red circles). The total power of the WGM that circulates along the droplet equator is fixed at 1 W. For comparison, the changes in refractive index ( Δ n ) due to the Kerr effect are shown in the same figure, which are estimated using Δ n χ ( 3 ) | E s u r f p e a k | 2 . The Kerr effects in water and in CS2 are represented as the blue and black diamonds, respectively. All points are connected by dashed lines. (b) The relative shift in WGM frequency induced by the radiation pressure of a single photon. Two different values are used for surface tension: σ = 72 m N / m (blue circles), and σ = 1 m N / m (red crosses). All points are connected by dashed lines.

Tables (1)

Tables Icon

Table 1 The Angular Mode Number l and Resonance Wavelength λ of WGMs in Liquid Droplets.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E = A ( x , z ) e i ( ω t k x ) e ^ y ,
n e f f ( x , z ) = n 0 + ( n h ) Δ h ( x , z ) .
2 E + n e f f 2 ( x , z ) ω 2 c 2 E = 0.
2 i k A x + 2 A z 2 = 2 n 0 ω 2 c 2 ( n h ) Δ h ( x , z ) A ( x , z ) .
σ d 2 Δ h ( z ) d z 2 + Δ ρ g Δ h ( z ) = 1 2 ε 0 ( n 2 2 n 1 2 ) n 2 2 n 1 2 | A ( x , z ) | 2 ,
2 i k A x + 2 A z 2 = χ e f f ω 2 c 2 | A | 2 A ,
w h e r e χ e f f = ( n h ) ε 0 n 0 ( n 2 2 n 1 2 ) n 2 2 Δ ρ g n 1 2 .
A ( x , z ) = A 0 sech ( z z 0 ) e i γ x ,
w h e r e z 0 = n 0 k | A 0 | 2 χ e f f , γ = k χ e f f | A 0 | 2 4 n 0 2 .
Δ P + P o p t = 2 σ κ ¯ ,
E l m T E = g l ( k q r ) X l m ( θ , ϕ ) e i ω t ,
H l m T E = i k q Z q × [ g l ( k q r ) X l m ( θ , ϕ ) ] e i ω t ,
g l ( k q r ) = { A c o j l ( k c o r ) ,       r < a A c l h l ( 1 ) ( k c l r ) ,     r > a
p o p t = 1 2 ε 0 ( n c o 2 n c l 2 ) | E s u r f | 2 ,
κ ¯ ( x e , θ ) = 1 2 a x p x e 2 x e 2 + ( x p 2 x e 2 ) sin 2 θ [ x e 2 + ( x p 2 x e 2 ) sin 2 θ ] 3 / 2 ,
2 Δ p + 0 π p o p t ( θ ) sin θ d θ = 2 σ 0 π κ ¯ ( x e , θ ) sin θ d θ ,
0 π p o p t ( θ ) Y 20 ( θ ) sin θ d θ = 2 σ 0 π κ ¯ ( x e , θ ) Y 20 ( θ ) sin θ d θ ,
F ( x e ) = 0 π a κ ¯ ( x e , θ ) Y 20 ( θ ) sin θ d θ Γ σ ( x e 1 ) .
| E s u r f | 2 = | E s u r f p e a k | 2 f l m ( θ ) ,
0 π p o p t ( θ ) Y 20 ( θ ) sin θ d θ = 1 2 ε 0 ( n c o 2 n c l 2 ) | E s u r f p e a k | 2 0 π f l m ( θ ) Y 20 ( θ ) sin θ d θ .
Γ θ l m = n c o a λ 0 π f l m ( θ ) Y 20 ( θ ) sin θ d θ .
Δ R a = x e 1 = Γ θ l m ε 0 λ 4 Γ σ σ n c o ( n c o 2 n c l 2 ) | E s u r f p e a k | 2 .
Δ ω ω = 2 l 1 2 ( l + 1 ) Δ R a .

Metrics