Abstract

Expanded-core structures based on layered increased index (type I) waveguiding traces are fabricated by ultrafast laser photoinscription in bulk optical glasses, with examples for fused silica and chalcogenide glasses. The expanded-core waveguides can serve for large-mode-area guiding concepts and their feasibility is experimentally investigated. A parametric study of the geometry, number of traces and index contrast indicates the possibility to design guided modes characteristics as exemplified in fused silica. A specific arrangement consisting of 8 traces of guiding layers with 6µm separation exhibit single-mode transport properties with mode field area of ~805µm2. The condition of single mode operation is also discussed in the frame of the dispersion relation of light guiding in periodical dielectric structures. The supported supermode of expanded-core structures can be controlled by careful design of the refractive index change, the number of guiding layers and the thickness of the interlayers. Inspection of the propagation characteristics shows equally low loss features. A Y-branching splitter based on expanded-core concept conserving single mode characteristics is fabricated. The optical design is equally successfully tested in chalcogenide Gallium Lanthanum Sulfide glass. Ultrafast laser inscribed expanded-core waveguiding provides therefore an interesting path of fabricating large mode area waveguides usable in near infrared and mid-infrared region beneficial for applications requiring high power or large mode dimensions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2

Helen L. Butcher, David G. MacLachlan, David Lee, Robert R. Thomson, and Damien Weidmann
Opt. Express 26(8) 10930-10943 (2018)

Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing

Shi-Ling Li, Peigao Han, Meng Shi, Yicun Yao, Bing Hu, Mingwei Wang, and Xiaonong Zhu
Opt. Express 19(24) 23958-23964 (2011)

Three-dimensional optical sensing network written in fused silica glass with femtosecond laser

Haibin Zhang, Stephen Ho, Shane M. Eaton, Jianzhao Li, and Peter R. Herman
Opt. Express 16(18) 14015-14023 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  3. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
    [Crossref] [PubMed]
  4. J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
    [Crossref] [PubMed]
  5. C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, CTuBB3 (2007).
    [Crossref]
  6. C.-H. Liu, S. H. Huang, C. Zhu, and A. Galvanauskas, “High energy and high power pulsed chirally-coupled-core fiber laser system,” Paper MD2, ASSP, Denver (2009).
  7. A. Kumar, V. Rastogi, and K. S. Chiang, “Large-core single-mode channel waveguide based on geometrically shaped leaky cladding,” Appl. Phys. B 90(3–4), 507–512 (2008).
    [Crossref]
  8. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
    [Crossref]
  9. L. Rosa, K. Saitoh, Y. Tsuchida, S. K. Varshney, M. Koshiba, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, and L. Vincetti, “Single-Mode Large-Mode-Area Leakage Channel Fibers with Octagonal Symmetry,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper IWB3.
  10. M. M. Vogel, M. Abdou-Ahmed, A. Voss, and T. Graf, “Very-large-mode-area, single-mode multicore fiber,” Opt. Lett. 34(18), 2876–2878 (2009).
    [Crossref] [PubMed]
  11. J. M. Fini, “Large-mode-area multicore fibers in the single-moded regime,” Opt. Express 19(5), 4042–4046 (2011).
    [Crossref] [PubMed]
  12. Y. Huo, P. Cheo, and G. King, “Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier,” Opt. Express 12(25), 6230–6239 (2004).
    [Crossref] [PubMed]
  13. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,” Opt. Lett. 31(17), 2577–2579 (2006).
    [Crossref] [PubMed]
  14. C. D’Amico, G. Cheng, C. Mauclair, J. Troles, L. Calvez, V. Nazabal, C. Caillaud, G. Martin, B. Arezki, E. LeCoarer, P. Kern, and R. Stoian, “Large-mode-area infrared guiding in ultrafast laser written waveguides in sulfur-based chalcogenide glasses,” Opt. Express 22(11), 13091–13101 (2014).
    [Crossref] [PubMed]
  15. P. Wang, G. Cheng, R. Yi, X. Liu, T. Shang, Z. Wang, and L. Guo, “Theoretical and experimental study of 37-core waveguides with large mode area,” Appl. Opt. 52(33), 7981–7986 (2013).
    [PubMed]
  16. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30(9), 1060–1062 (2005).
    [Crossref] [PubMed]
  17. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
    [Crossref] [PubMed]
  18. J. Burgmeier, C. Waltermann, G. Flachenecker, and W. Schade, “Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses,” Opt. Lett. 39(3), 540–543 (2014).
    [Crossref] [PubMed]
  19. H. Liu, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers,” Opt. Lett. 38(17), 3294–3297 (2013).
    [Crossref] [PubMed]
  20. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
    [Crossref] [PubMed]
  21. W. Streifer, D. R. Scifres, and R. D. Burnham, “Optical analysis of multiple-quantum-well lasers,” Appl. Opt. 18(21), 3547–3548 (1979).
    [Crossref] [PubMed]
  22. Y. F. Li, K. Iizuka, and J. W. Lit, “Equivalent-layer method for optical waveguides with a multiple-quantum-well structure,” Opt. Lett. 17(4), 273–275 (1992).
    [Crossref] [PubMed]
  23. M. Saini and E. K. Sharma, “Equivalent refractive index of MQW waveguides,” IEEE J. Quantum Electron. 32(8), 1383–1390 (1996).
    [Crossref]
  24. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  25. P. Yeh, “Resonant tunneling of electromagnetic radiation in superlattice structures,” J. Opt. Soc. Am. A 2(4), 568–571 (1985).
    [Crossref]
  26. T. A. Ramadan, “Expanding the core: A new approach for the design of single-mode waveguides,” J. Lightwave Technol. 23(11), 3843–3856 (2005).
    [Crossref]
  27. L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13(6), 1999–2006 (2005).
    [Crossref] [PubMed]
  28. H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14(11), 4826–4834 (2006).
    [Crossref] [PubMed]
  29. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17(12), 9515–9525 (2009).
    [Crossref] [PubMed]
  30. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev. 2(1-2), 26–46 (2008).
    [Crossref]
  31. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
    [Crossref] [PubMed]

2014 (2)

2013 (4)

2011 (2)

2010 (3)

2009 (3)

2008 (2)

A. Kumar, V. Rastogi, and K. S. Chiang, “Large-core single-mode channel waveguide based on geometrically shaped leaky cladding,” Appl. Phys. B 90(3–4), 507–512 (2008).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

2007 (1)

2006 (2)

2005 (3)

2004 (1)

1996 (1)

M. Saini and E. K. Sharma, “Equivalent refractive index of MQW waveguides,” IEEE J. Quantum Electron. 32(8), 1383–1390 (1996).
[Crossref]

1992 (1)

1985 (1)

1979 (1)

1977 (1)

Abdou-Ahmed, M.

Arai, A.

Arezki, B.

Arriola, A.

Audouard, E.

Bland-Hawthorn, J.

Boukenter, A.

Burakov, I. M.

Burgmeier, J.

Burnham, R. D.

Caillaud, C.

Calmano, T.

Calvez, L.

Charles, N.

Chen, F.

Chen, S.

Cheng, G.

Cheo, P.

Chiang, K. S.

A. Kumar, V. Rastogi, and K. S. Chiang, “Large-core single-mode channel waveguide based on geometrically shaped leaky cladding,” Appl. Phys. B 90(3–4), 507–512 (2008).
[Crossref]

Clarkson, W. A.

D’Amico, C.

Dong, L.

Eaton, S.

Eaton, S. M.

Fini, J. M.

Flachenecker, G.

Fuerbach, A.

Fujimoto, J. G.

Graf, T.

Gross, S.

Guo, L.

Herman, P. R.

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

Hong, C.-S.

Hu, Y.

Huber, G.

Huo, G.

Huo, Y.

Iizuka, K.

Ippen, E. P.

Jaque, D.

Jovanovic, N.

Kern, P.

King, G.

Kowalevicz, A. M.

Kränkel, C.

Kumar, A.

A. Kumar, V. Rastogi, and K. S. Chiang, “Large-core single-mode channel waveguide based on geometrically shaped leaky cladding,” Appl. Phys. B 90(3–4), 507–512 (2008).
[Crossref]

LeCoarer, E.

Li, J.

Li, L.

Li, Y. F.

Lit, J. W.

Liu, H.

Liu, X.

Martin, G.

Mashanovich, G. Z.

Mauclair, C.

Mermillod-Blondin, A.

Miloševic, M. M.

Minoshima, K.

Mishchik, K.

Moloney, J. V.

Müller, S.

Nazabal, V.

Nedeljkovic, M.

Nilsson, J.

Olaizola, S. M.

Ouerdane, Y.

Owens, N.

Parriaux, O.

Paschke, A.-G.

Peng, X.

Peyghambarian, N.

Ramadan, T. A.

Rastogi, V.

A. Kumar, V. Rastogi, and K. S. Chiang, “Large-core single-mode channel waveguide based on geometrically shaped leaky cladding,” Appl. Phys. B 90(3–4), 507–512 (2008).
[Crossref]

Richardson, D. J.

Rosenfeld, A.

Saini, M.

M. Saini and E. K. Sharma, “Equivalent refractive index of MQW waveguides,” IEEE J. Quantum Electron. 32(8), 1383–1390 (1996).
[Crossref]

Schade, W.

Schülzgen, A.

Scifres, D. R.

Shah, L.

Shang, T.

Sharma, E. K.

M. Saini and E. K. Sharma, “Equivalent refractive index of MQW waveguides,” IEEE J. Quantum Electron. 32(8), 1383–1390 (1996).
[Crossref]

Sharma, V.

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Stoian, R.

Streifer, W.

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

Temyanko, V. L.

Teo, E. J.

Troles, J.

Tuthill, P. G.

Vázquez de Aldana, J. R.

Vogel, M. M.

Voss, A.

Waltermann, C.

Wang, P.

Wang, Z.

Withford, M. J.

Xiong, B.

Yariv, A.

Yeh, P.

Yi, R.

Zhang, H.

Appl. Opt. (2)

Appl. Phys. B (1)

A. Kumar, V. Rastogi, and K. S. Chiang, “Large-core single-mode channel waveguide based on geometrically shaped leaky cladding,” Appl. Phys. B 90(3–4), 507–512 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Saini and E. K. Sharma, “Equivalent refractive index of MQW waveguides,” IEEE J. Quantum Electron. 32(8), 1383–1390 (1996).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Laser and Photon. Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

Nat. Photonics (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (11)

Y. Huo, P. Cheo, and G. King, “Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier,” Opt. Express 12(25), 6230–6239 (2004).
[Crossref] [PubMed]

L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13(6), 1999–2006 (2005).
[Crossref] [PubMed]

J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
[Crossref] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17(12), 9515–9525 (2009).
[Crossref] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

J. M. Fini, “Large-mode-area multicore fibers in the single-moded regime,” Opt. Express 19(5), 4042–4046 (2011).
[Crossref] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[Crossref] [PubMed]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
[Crossref] [PubMed]

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14(11), 4826–4834 (2006).
[Crossref] [PubMed]

C. D’Amico, G. Cheng, C. Mauclair, J. Troles, L. Calvez, V. Nazabal, C. Caillaud, G. Martin, B. Arezki, E. LeCoarer, P. Kern, and R. Stoian, “Large-mode-area infrared guiding in ultrafast laser written waveguides in sulfur-based chalcogenide glasses,” Opt. Express 22(11), 13091–13101 (2014).
[Crossref] [PubMed]

Opt. Lett. (6)

Other (3)

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, CTuBB3 (2007).
[Crossref]

C.-H. Liu, S. H. Huang, C. Zhu, and A. Galvanauskas, “High energy and high power pulsed chirally-coupled-core fiber laser system,” Paper MD2, ASSP, Denver (2009).

L. Rosa, K. Saitoh, Y. Tsuchida, S. K. Varshney, M. Koshiba, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, and L. Vincetti, “Single-Mode Large-Mode-Area Leakage Channel Fibers with Octagonal Symmetry,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper IWB3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the experimental setup used for ECW fabrication in fused silica: HWP half wave-plate, TFP thin film polarizer, ES electromechanic shutter. Both the shutter and the 3D translation stage are automatically controlled by a computer.
Fig. 2
Fig. 2 The excited near-field modes of an expanded-core waveguide in fused silica consisting of 13 type I waveguides with 4µm separation. The top row indicates experimental results and guiding characteristics upon 980nm injected laser light. (a) optical transmission microscopy image of the ECW end face structure. The photoinscribing laser pulses are coming from the top. (b)~(e) Over exposed near field mode images depicting LP21,LP11 and LP01 mode of 980nm laser radiation supported by the ECW. The mode image is superposed on white LED illumination emphasizing the processed structure. The bottom row show corresponding FEM simulation results of the supported mode of ECW. The structure is written by 3.6µJ, 150fs, 1kHz laser scan pulses at the speed of 80µm/s. The length of the waveguide is 10mm.
Fig. 3
Fig. 3 Single mode supported ECW consisting of 8 Type I traces with 6µm separation in fused silica. (a) optical white-light transmission microscopy image of the ECW end face, (b) over exposed near field mode image for 980nm laser radiation injected in the center of structure with and (c) without white LED illumination, (d) Gaussian fitted mode field intensity distribution in X direction and (e) in Y direction. The structure is written by 3.6uJ, 150fs, 1kHz laser pulses at the speed of 160 µm/s. The whole length of the waveguide is 10mm.
Fig. 4
Fig. 4 Condition I for the single-mode operation for various wavelengths and index contrasts. The actual N number must not exceed the marked lines. The guiding wavelengths are shown in the chart. The thickness of the guiding layers is set to be 2μm.
Fig. 5
Fig. 5 Dispersion relation with implication of condition II versus (a) index change of guiding layers Δ n with N = 13, s = 2µm, (b) number of guiding layers N with Δ n = 0.0001, S = 2µm, (c) thickness of interlayer s with Δ n = 0.0001, N = 8. X axis is the normalized propagation constant β n defined in the text.
Fig. 6
Fig. 6 Single mode supported ECW was designed to construct a Y-branching structure functioning as a beam splitter. (a) 3D schematic of the ECW splitter. (b) Top view of the PCM image of the Y-branching structure. The image is composed by stitching together 34 images, each scaled down in width by a factor of 20. (c) End view of the optical transmission microscopy image. (d) Near field mode image with 980nm laser radiation.
Fig. 7
Fig. 7 10 × 5µm ECW in GLS. (a) White-light image of the structure. (b) Single mode at 800 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n e q 2 = j n j 2 d j j d j
K ( β , ω ) = cos 1 ( A + D 2 ) Λ
A sin N K Λ sin K Λ + sin ( N 1 ) K Λ sin K Λ = 0
N T < π
cos ( π / N ) < f T , S , ε ( β n ) | β n = 0
β n = [ ( β / k 0 ) 2 n c l a d 2 ] / [ n c o r e 2 n c l a d 2 ]

Metrics