Abstract

Spatial confinement with a small cavity is known to enhance the signal intensity of laser-induced breakdown spectroscopy. In this study, the optical emission intensity and signal stability in terms of the relative standard deviation of laser-induced plasmas generated from brass samples with and without the presence of small cylindrical cavities were carefully investigated. The cylindrical cavities were prefabricated by drilling on a set of aluminum plates with variable diameters and heights, which were then placed near the sample surface. Both plasma emission intensity and stability were influenced by cavity diameter and height. With increased cavity diameter from 1.5 mm to 6 mm, the emission intensity of the confined plasma initially increased and then decreased. Furthermore, if a suitable cavity size was selected, both line intensity and stability of the confined plasma emission improved. Based on these observed signal characters with varying cavities, the optimized cavity size for the best signal quality of the laser-induced plasma emission on brass sample was obtained.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy

L.B. Guo, Z.Q. Hao, M. Shen, W. Xiong, X.N. He, Z.Q. Xie, M. Gao, X.Y. Li, X.Y. Zeng, and Y.F. Lu
Opt. Express 21(15) 18188-18195 (2013)

Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings

An Li, Shuai Guo, Nasrullah Wazir, Ke Chai, Liang Liang, Min Zhang, Yan Hao, Pengfei Nan, and Ruibin Liu
Opt. Express 25(22) 27559-27569 (2017)

Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal

Zhe Wang, Zongyu Hou, Siu-lung Lui, Dong Jiang, Jianmin Liu, and Zheng Li
Opt. Express 20(S6) A1011-A1018 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-Induced Breakdown Spectroscopy, Elemental Analysis (Wiley Online Library, 2006).
  2. J. P. Singh and S. N. Thakkur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, 2007).
  3. Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Physics. 9(4), 419–438 (2014).
    [Crossref]
  4. C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(6), 792–804 (2005).
    [Crossref]
  5. C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(2), 265–276 (2005).
    [Crossref]
  6. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
    [Crossref] [PubMed]
  7. L. I. Kexue, W. Zhou, Q. Shen, J. Shao, and H. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
    [Crossref]
  8. W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, “Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy,” Appl. Opt. 51(7), B42–B48 (2012).
    [Crossref] [PubMed]
  9. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
    [Crossref]
  10. I. Gobernado-Mitre, A. C. Prieto, V. Zafiropulos, Y. Spetsidou, and C. Fotakis, “On-line monitoring of laser cleaning of limestone by laser-induced breakdown spectroscopy and laser-induced fluorescence,” Appl. Spectrosc. 51(8), 1125–1129 (1997).
    [Crossref]
  11. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
    [Crossref] [PubMed]
  12. X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc. 58(5), 867–877 (2003).
    [Crossref]
  13. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
    [Crossref]
  14. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
    [Crossref]
  15. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
    [Crossref]
  16. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
    [Crossref]
  17. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
    [Crossref]
  18. Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(23), A1011–A1018 (2012).
    [Crossref] [PubMed]
  19. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
    [Crossref] [PubMed]
  20. W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
    [Crossref] [PubMed]
  21. X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
    [Crossref]

2014 (1)

Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Physics. 9(4), 419–438 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (2)

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[Crossref] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

2010 (2)

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

L. I. Kexue, W. Zhou, Q. Shen, J. Shao, and H. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[Crossref]

2009 (1)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

2007 (3)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[Crossref] [PubMed]

2005 (3)

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(6), 792–804 (2005).
[Crossref]

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(2), 265–276 (2005).
[Crossref]

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[Crossref] [PubMed]

2003 (1)

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc. 58(5), 867–877 (2003).
[Crossref]

2001 (1)

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

1997 (1)

Allen, S. D.

Becker, C.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Cai, Z. X.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

Corsi, M.

Cristoforetti, G.

Ding, H.

Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Physics. 9(4), 419–438 (2014).
[Crossref]

Dottery, E. L.

Dubessy, J.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(6), 792–804 (2005).
[Crossref]

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(2), 265–276 (2005).
[Crossref]

Falk, H.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Fang, X.

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

Fichet, P.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(2), 265–276 (2005).
[Crossref]

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(6), 792–804 (2005).
[Crossref]

Fotakis, C.

Gautier, C.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(2), 265–276 (2005).
[Crossref]

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(6), 792–804 (2005).
[Crossref]

Gobernado-Mitre, I.

Greif, R.

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc. 58(5), 867–877 (2003).
[Crossref]

Guo, L. B.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

Hidalgo, M.

Hilbk-Kortenbruck, F.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Hou, Z.

Hu, W.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

Iriarte, D.

Jiang, D.

Kexue, L. I.

L. I. Kexue, W. Zhou, Q. Shen, J. Shao, and H. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[Crossref]

Killinger, D. K.

L’Hermite, D.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(2), 265–276 (2005).
[Crossref]

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(6), 792–804 (2005).
[Crossref]

Lacour, J. L.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(6), 792–804 (2005).
[Crossref]

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(2), 265–276 (2005).
[Crossref]

Legnaioli, S.

Li, C. M.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

Li, K.

Li, X.

X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
[Crossref]

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[Crossref] [PubMed]

Li, Z.

Ling, H.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

Liu, C.

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc. 58(5), 867–877 (2003).
[Crossref]

Liu, J.

Liu, W.

Lu, J.

Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Physics. 9(4), 419–438 (2014).
[Crossref]

Lu, Y. F.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Lui, S. L.

Mao, S. S.

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc. 58(5), 867–877 (2003).
[Crossref]

Mao, X.

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc. 58(5), 867–877 (2003).
[Crossref]

Menut, D.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(6), 792–804 (2005).
[Crossref]

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(2), 265–276 (2005).
[Crossref]

Ni, W.

Noll, R.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Palleschi, V.

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

Prieto, A. C.

Qian, H.

W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, “Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy,” Appl. Opt. 51(7), B42–B48 (2012).
[Crossref] [PubMed]

X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
[Crossref]

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[Crossref] [PubMed]

L. I. Kexue, W. Zhou, Q. Shen, J. Shao, and H. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[Crossref]

Ren, Z.

X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
[Crossref]

W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, “Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy,” Appl. Opt. 51(7), B42–B48 (2012).
[Crossref] [PubMed]

Russo, R. E.

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc. 58(5), 867–877 (2003).
[Crossref]

Salvetti, A.

Shao, J.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[Crossref] [PubMed]

L. I. Kexue, W. Zhou, Q. Shen, J. Shao, and H. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[Crossref]

Shen, Q.

L. I. Kexue, W. Zhou, Q. Shen, J. Shao, and H. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[Crossref]

Shen, X. K.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

Spetsidou, Y.

Stefano, C.

Sun, J.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Tognoni, E.

Wang, Z.

Waterbury, R. D.

Wintjens, P.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

Xie, P.

Yu, Y.

Yuan, T.

Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Physics. 9(4), 419–438 (2014).
[Crossref]

Zafiropulos, V.

Zeng, X.

Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Physics. 9(4), 419–438 (2014).
[Crossref]

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc. 58(5), 867–877 (2003).
[Crossref]

Zeng, X. Y.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

Zhang, B. Y.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

Zhou, W.

Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Physics. 9(4), 419–438 (2014).
[Crossref]

X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
[Crossref]

W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, “Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy,” Appl. Opt. 51(7), B42–B48 (2012).
[Crossref] [PubMed]

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[Crossref] [PubMed]

L. I. Kexue, W. Zhou, Q. Shen, J. Shao, and H. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[Crossref]

Zhou, Y. S.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[Crossref]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

Appl. Spectrosc. (2)

Frontiers Physics. (1)

Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Physics. 9(4), 419–438 (2014).
[Crossref]

J. Anal. At. Spectrom. (2)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

J. Appl. Phys. (1)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Opt. Commun. (1)

X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, “Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil,” Opt. Commun. 285(1), 54–58 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Spectrochim. Acta, B At. Spectrosc. (5)

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc. 58(5), 867–877 (2003).
[Crossref]

L. I. Kexue, W. Zhou, Q. Shen, J. Shao, and H. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[Crossref]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc. 56(6), 933–945 (2001).
[Crossref]

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(6), 792–804 (2005).
[Crossref]

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta, B At. Spectrosc. 60(2), 265–276 (2005).
[Crossref]

Other (2)

D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-Induced Breakdown Spectroscopy, Elemental Analysis (Wiley Online Library, 2006).

J. P. Singh and S. N. Thakkur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 Variation of the intensities of selected atomic and ionic spectral lines of plasma in cavities of different heights. At each height, the cavity diameter are varying from 1.5 to 6 mm.
Fig. 3
Fig. 3 Variation of spectral intensity vs. different cavity heights at diameter 3 and 3.5 mm.
Fig. 4
Fig. 4 (a) Variation of RSD vs. different cavity heights at diameter 3 mm. The point at height equals 0 in the figure means without cavity confinement. (b) Spectrum of brass sample obtained by LIBS with cylindrical cavity of height 1.0 mm and diameter 3.0 mm and (c) LIBS without cavity confinement.

Tables (1)

Tables Icon

Table 1 Improvement of Line Intensity and RSD of Several Selected Lines

Metrics