Abstract

Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance

Shinya Yoshioka and Shuichi Kinoshita
J. Opt. Soc. Am. A 23(1) 134-141 (2006)

Effects of a butterfly scale microstructure on the iridescent color observed at different angles

Haruna Tada, Seth E. Mann, Ioannis N. Miaoulis, and Peter Y. Wong
Appl. Opt. 37(9) 1579-1584 (1998)

Effects of a butterfly scale microstructure on the iridescent color observed at different angles

Haruna Tada, Seth E. Mann, Ioannis N. Miaoulis, and Peter Y. Wong
Opt. Express 5(4) 87-92 (1999)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Konnen, Polarized light in nature (Cambridge University, 1985), Chap. 3.
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  3. T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 619–626 (2011).
    [Crossref] [PubMed]
  4. M. Kolle, Photonic structures inspired by nature (Springer& Heidelberg, 2011), Chap. 12.
  5. K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
    [Crossref]
  6. A. Kelber, C. Thunell, and K. Arikawa, “Polarisation-dependent colour vision in Papilio butterflies,” J. Exp. Biol. 204(Pt 14), 2469–2480 (2001).
    [PubMed]
  7. S. Kleinlogel and A. G. White, “The secret world of shrimps: polarisation vision at its best,” PLoS ONE 3(5), e2190 (2008).
    [Crossref] [PubMed]
  8. J. M. Douglas, T. W. Cronin, T.-H. Chiou, and N. J. Dominy, “Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae),” J. Exp. Biol. 210(5), 788–799 (2007).
    [Crossref] [PubMed]
  9. A. Kelber, “Why ‘false’ colours are seen by butterflies,” Nature 402(6759), 251 (1999).
    [Crossref] [PubMed]
  10. S. M. Reppert, H. Zhu, and R. H. White, “Polarized light helps monarch butterflies navigate,” Curr. Biol. 14(2), 155–158 (2004).
    [Crossref] [PubMed]
  11. A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
    [Crossref] [PubMed]
  12. D. G. Stavenga, A. Matsushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” J. Exp. Biol. 215(4), 657–662 (2012).
    [Crossref] [PubMed]
  13. D. H. Goldstein, Polarized Light, (Taylor & Francis, 2010).
  14. J. S. Baba, The use of polarized light for biomedical applications, (Texas A&M University, 2003).
  15. Y. F. Li, A study on the use of polarized light in application to noninvasive tissue diagnostics, (Diss. University of Toledo, 2005).
  16. T. Scharf, Polarized light in liquid crystals and polymers, (John Wiley & Sons, 2007).
  17. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
    [Crossref] [PubMed]
  18. M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
    [Crossref] [PubMed]
  19. B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales,” Interface Focus, rsfs20110082 (2012).
  20. S. N. Gorb and P. Vukusic, Functional surfaces in biology: Little Structures with Big Effects, (Springer Science & Business Media, 2009), Chap. 7.
  21. P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6(Suppl 2), S193–S201 (2009).
    [Crossref] [PubMed]
  22. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a Morpho-butterfly-scale quasistructure,” Jpn. J. Appl. Phys. 44(11L), L48–L50 (2005).
    [Crossref]
  23. P. Y. Chen, J. McKittrick, and M. A. Meyers, “Biological materials: functional adaptations and bioinspired designs,” Prog. Mater. Sci. 57(8), 1492–1704 (2012).
    [Crossref]
  24. Z. Han, S. Niu, C. Shang, Z. Liu, and L. Ren, “Light trapping structures in wing scales of butterfly Trogonoptera brookiana,” Nanoscale 4(9), 2879–2883 (2012).
    [Crossref] [PubMed]
  25. Z. Han, S. Niu, M. Yang, J. Zhang, W. Yin, and L. Ren, “An ingenious replica templated from the light trapping structure in butterfly wing scales,” Nanoscale 5(18), 8500–8506 (2013).
    [Crossref] [PubMed]
  26. M. A. Steindorfer, V. Schmidt, M. Belegratis, B. Stadlober, and J. R. Krenn, “Detailed simulation of structural color generation inspired by the Morpho butterfly,” Opt. Express 20(19), 21485–21494 (2012).
    [Crossref] [PubMed]
  27. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
    [Crossref] [PubMed]
  28. R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
    [Crossref] [PubMed]
  29. J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
    [Crossref] [PubMed]
  30. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19(24), 24061–24066 (2011).
    [Crossref] [PubMed]
  31. W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, and Y. Ichioka, “Polarization-multiplexed diffractive optical elements fabricated by subwavelength structures,” Appl. Opt. 41(1), 96–100 (2002).
    [Crossref] [PubMed]
  32. R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33(34), 7875–7882 (1994).
    [Crossref] [PubMed]
  33. Y. Liao, Polarization optics (Science, Beijing, 2003)
  34. S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Environ. Sci 5(11), 9195–9216 (2012).
    [Crossref]

2013 (2)

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Z. Han, S. Niu, M. Yang, J. Zhang, W. Yin, and L. Ren, “An ingenious replica templated from the light trapping structure in butterfly wing scales,” Nanoscale 5(18), 8500–8506 (2013).
[Crossref] [PubMed]

2012 (5)

P. Y. Chen, J. McKittrick, and M. A. Meyers, “Biological materials: functional adaptations and bioinspired designs,” Prog. Mater. Sci. 57(8), 1492–1704 (2012).
[Crossref]

Z. Han, S. Niu, C. Shang, Z. Liu, and L. Ren, “Light trapping structures in wing scales of butterfly Trogonoptera brookiana,” Nanoscale 4(9), 2879–2883 (2012).
[Crossref] [PubMed]

D. G. Stavenga, A. Matsushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” J. Exp. Biol. 215(4), 657–662 (2012).
[Crossref] [PubMed]

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Environ. Sci 5(11), 9195–9216 (2012).
[Crossref]

M. A. Steindorfer, V. Schmidt, M. Belegratis, B. Stadlober, and J. R. Krenn, “Detailed simulation of structural color generation inspired by the Morpho butterfly,” Opt. Express 20(19), 21485–21494 (2012).
[Crossref] [PubMed]

2011 (3)

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19(24), 24061–24066 (2011).
[Crossref] [PubMed]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 619–626 (2011).
[Crossref] [PubMed]

2009 (1)

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6(Suppl 2), S193–S201 (2009).
[Crossref] [PubMed]

2008 (2)

S. Kleinlogel and A. G. White, “The secret world of shrimps: polarisation vision at its best,” PLoS ONE 3(5), e2190 (2008).
[Crossref] [PubMed]

J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
[Crossref] [PubMed]

2007 (2)

J. M. Douglas, T. W. Cronin, T.-H. Chiou, and N. J. Dominy, “Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae),” J. Exp. Biol. 210(5), 788–799 (2007).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2006 (1)

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[Crossref] [PubMed]

2005 (2)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a Morpho-butterfly-scale quasistructure,” Jpn. J. Appl. Phys. 44(11L), L48–L50 (2005).
[Crossref]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[Crossref] [PubMed]

2004 (1)

S. M. Reppert, H. Zhu, and R. H. White, “Polarized light helps monarch butterflies navigate,” Curr. Biol. 14(2), 155–158 (2004).
[Crossref] [PubMed]

2003 (1)

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

A. Kelber, C. Thunell, and K. Arikawa, “Polarisation-dependent colour vision in Papilio butterflies,” J. Exp. Biol. 204(Pt 14), 2469–2480 (2001).
[PubMed]

2000 (1)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

1999 (1)

A. Kelber, “Why ‘false’ colours are seen by butterflies,” Nature 402(6759), 251 (1999).
[Crossref] [PubMed]

1994 (1)

Arikawa, K.

D. G. Stavenga, A. Matsushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” J. Exp. Biol. 215(4), 657–662 (2012).
[Crossref] [PubMed]

A. Kelber, C. Thunell, and K. Arikawa, “Polarisation-dependent colour vision in Papilio butterflies,” J. Exp. Biol. 204(Pt 14), 2469–2480 (2001).
[PubMed]

Bálint, Z.

J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
[Crossref] [PubMed]

Belegratis, M.

Biró, L. P.

J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
[Crossref] [PubMed]

Bräuer, R.

Bryngdahl, O.

Chen, P. Y.

P. Y. Chen, J. McKittrick, and M. A. Meyers, “Biological materials: functional adaptations and bioinspired designs,” Prog. Mater. Sci. 57(8), 1492–1704 (2012).
[Crossref]

Chiou, T.-H.

J. M. Douglas, T. W. Cronin, T.-H. Chiou, and N. J. Dominy, “Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae),” J. Exp. Biol. 210(5), 788–799 (2007).
[Crossref] [PubMed]

Cronin, T. W.

T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 619–626 (2011).
[Crossref] [PubMed]

J. M. Douglas, T. W. Cronin, T.-H. Chiou, and N. J. Dominy, “Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae),” J. Exp. Biol. 210(5), 788–799 (2007).
[Crossref] [PubMed]

Dominy, N. J.

J. M. Douglas, T. W. Cronin, T.-H. Chiou, and N. J. Dominy, “Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae),” J. Exp. Biol. 210(5), 788–799 (2007).
[Crossref] [PubMed]

Douglas, J. M.

J. M. Douglas, T. W. Cronin, T.-H. Chiou, and N. J. Dominy, “Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae),” J. Exp. Biol. 210(5), 788–799 (2007).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Fan, T.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Environ. Sci 5(11), 9195–9216 (2012).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Grosse-Brauckmann, K.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Gu, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Guo, X.

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Environ. Sci 5(11), 9195–9216 (2012).
[Crossref]

Hamamoto, T.

Han, Z.

Z. Han, S. Niu, M. Yang, J. Zhang, W. Yin, and L. Ren, “An ingenious replica templated from the light trapping structure in butterfly wing scales,” Nanoscale 5(18), 8500–8506 (2013).
[Crossref] [PubMed]

Z. Han, S. Niu, C. Shang, Z. Liu, and L. Ren, “Light trapping structures in wing scales of butterfly Trogonoptera brookiana,” Nanoscale 4(9), 2879–2883 (2012).
[Crossref] [PubMed]

Haruyama, Y.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a Morpho-butterfly-scale quasistructure,” Jpn. J. Appl. Phys. 44(11L), L48–L50 (2005).
[Crossref]

Hooper, I.

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6(Suppl 2), S193–S201 (2009).
[Crossref] [PubMed]

Hoshino, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a Morpho-butterfly-scale quasistructure,” Jpn. J. Appl. Phys. 44(11L), L48–L50 (2005).
[Crossref]

Hyde, S. T.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Ichioka, Y.

Jiggins, C.

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

Johnsen, S.

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

Kanda, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a Morpho-butterfly-scale quasistructure,” Jpn. J. Appl. Phys. 44(11L), L48–L50 (2005).
[Crossref]

Kelber, A.

A. Kelber, C. Thunell, and K. Arikawa, “Polarisation-dependent colour vision in Papilio butterflies,” J. Exp. Biol. 204(Pt 14), 2469–2480 (2001).
[PubMed]

A. Kelber, “Why ‘false’ colours are seen by butterflies,” Nature 402(6759), 251 (1999).
[Crossref] [PubMed]

Kelly, R.

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6(Suppl 2), S193–S201 (2009).
[Crossref] [PubMed]

Kertész, K.

J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
[Crossref] [PubMed]

Kinoshita, S.

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[Crossref] [PubMed]

Kleinlogel, S.

S. Kleinlogel and A. G. White, “The secret world of shrimps: polarisation vision at its best,” PLoS ONE 3(5), e2190 (2008).
[Crossref] [PubMed]

Konishi, T.

Krenn, J. R.

Lawrence, C. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

Leertouwer, H. L.

D. G. Stavenga, A. Matsushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” J. Exp. Biol. 215(4), 657–662 (2012).
[Crossref] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19(24), 24061–24066 (2011).
[Crossref] [PubMed]

Liu, Z.

Z. Han, S. Niu, C. Shang, Z. Liu, and L. Ren, “Light trapping structures in wing scales of butterfly Trogonoptera brookiana,” Nanoscale 4(9), 2879–2883 (2012).
[Crossref] [PubMed]

Lou, S.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Environ. Sci 5(11), 9195–9216 (2012).
[Crossref]

Lousse, V.

J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
[Crossref] [PubMed]

Marshall, J.

T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 619–626 (2011).
[Crossref] [PubMed]

Matsui, S.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a Morpho-butterfly-scale quasistructure,” Jpn. J. Appl. Phys. 44(11L), L48–L50 (2005).
[Crossref]

Matsushita, A.

D. G. Stavenga, A. Matsushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” J. Exp. Biol. 215(4), 657–662 (2012).
[Crossref] [PubMed]

McKittrick, J.

P. Y. Chen, J. McKittrick, and M. A. Meyers, “Biological materials: functional adaptations and bioinspired designs,” Prog. Mater. Sci. 57(8), 1492–1704 (2012).
[Crossref]

Mecke, K.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Meyers, M. A.

P. Y. Chen, J. McKittrick, and M. A. Meyers, “Biological materials: functional adaptations and bioinspired designs,” Prog. Mater. Sci. 57(8), 1492–1704 (2012).
[Crossref]

Neshev, D. N.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Niu, S.

Z. Han, S. Niu, M. Yang, J. Zhang, W. Yin, and L. Ren, “An ingenious replica templated from the light trapping structure in butterfly wing scales,” Nanoscale 5(18), 8500–8506 (2013).
[Crossref] [PubMed]

Z. Han, S. Niu, C. Shang, Z. Liu, and L. Ren, “Light trapping structures in wing scales of butterfly Trogonoptera brookiana,” Nanoscale 4(9), 2879–2883 (2012).
[Crossref] [PubMed]

Prum, R. O.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[Crossref] [PubMed]

Quinn, T.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[Crossref] [PubMed]

Rassart, M.

J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
[Crossref] [PubMed]

Ren, L.

Z. Han, S. Niu, M. Yang, J. Zhang, W. Yin, and L. Ren, “An ingenious replica templated from the light trapping structure in butterfly wing scales,” Nanoscale 5(18), 8500–8506 (2013).
[Crossref] [PubMed]

Z. Han, S. Niu, C. Shang, Z. Liu, and L. Ren, “Light trapping structures in wing scales of butterfly Trogonoptera brookiana,” Nanoscale 4(9), 2879–2883 (2012).
[Crossref] [PubMed]

Reppert, S. M.

S. M. Reppert, H. Zhu, and R. H. White, “Polarized light helps monarch butterflies navigate,” Curr. Biol. 14(2), 155–158 (2004).
[Crossref] [PubMed]

Saba, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Sambles, J. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

Schmidt, V.

Schröder-Turk, G. E.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Shang, C.

Z. Han, S. Niu, C. Shang, Z. Liu, and L. Ren, “Light trapping structures in wing scales of butterfly Trogonoptera brookiana,” Nanoscale 4(9), 2879–2883 (2012).
[Crossref] [PubMed]

Stadlober, B.

Stavenga, D. G.

D. G. Stavenga, A. Matsushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” J. Exp. Biol. 215(4), 657–662 (2012).
[Crossref] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19(24), 24061–24066 (2011).
[Crossref] [PubMed]

Steindorfer, M. A.

Sweeney, A.

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

Thiel, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Thunell, C.

A. Kelber, C. Thunell, and K. Arikawa, “Polarisation-dependent colour vision in Papilio butterflies,” J. Exp. Biol. 204(Pt 14), 2469–2480 (2001).
[PubMed]

Torres, R. H.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[Crossref] [PubMed]

Toyota, H.

Turner, M. D.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Vértesy, Z.

J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
[Crossref] [PubMed]

Vigneron, J. P.

J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
[Crossref] [PubMed]

Vukusic, P.

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6(Suppl 2), S193–S201 (2009).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

Watanabe, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a Morpho-butterfly-scale quasistructure,” Jpn. J. Appl. Phys. 44(11L), L48–L50 (2005).
[Crossref]

White, A. G.

S. Kleinlogel and A. G. White, “The secret world of shrimps: polarisation vision at its best,” PLoS ONE 3(5), e2190 (2008).
[Crossref] [PubMed]

White, R. H.

S. M. Reppert, H. Zhu, and R. H. White, “Polarized light helps monarch butterflies navigate,” Curr. Biol. 14(2), 155–158 (2004).
[Crossref] [PubMed]

Wilts, B. D.

D. G. Stavenga, A. Matsushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” J. Exp. Biol. 215(4), 657–662 (2012).
[Crossref] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19(24), 24061–24066 (2011).
[Crossref] [PubMed]

Yang, M.

Z. Han, S. Niu, M. Yang, J. Zhang, W. Yin, and L. Ren, “An ingenious replica templated from the light trapping structure in butterfly wing scales,” Nanoscale 5(18), 8500–8506 (2013).
[Crossref] [PubMed]

Yin, W.

Z. Han, S. Niu, M. Yang, J. Zhang, W. Yin, and L. Ren, “An ingenious replica templated from the light trapping structure in butterfly wing scales,” Nanoscale 5(18), 8500–8506 (2013).
[Crossref] [PubMed]

Yoshioka, S.

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[Crossref] [PubMed]

Yotsuya, T.

Yu, K.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Yu, W.

Zhang, D.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Environ. Sci 5(11), 9195–9216 (2012).
[Crossref]

Zhang, J.

Z. Han, S. Niu, M. Yang, J. Zhang, W. Yin, and L. Ren, “An ingenious replica templated from the light trapping structure in butterfly wing scales,” Nanoscale 5(18), 8500–8506 (2013).
[Crossref] [PubMed]

Zhu, H.

S. M. Reppert, H. Zhu, and R. H. White, “Polarized light helps monarch butterflies navigate,” Curr. Biol. 14(2), 155–158 (2004).
[Crossref] [PubMed]

Appl. Opt. (2)

ChemPhysChem (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[Crossref] [PubMed]

Curr. Biol. (1)

S. M. Reppert, H. Zhu, and R. H. White, “Polarized light helps monarch butterflies navigate,” Curr. Biol. 14(2), 155–158 (2004).
[Crossref] [PubMed]

Energy Environ. Sci (1)

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Environ. Sci 5(11), 9195–9216 (2012).
[Crossref]

J. Exp. Biol. (4)

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(4), 748–765 (2006).
[Crossref] [PubMed]

A. Kelber, C. Thunell, and K. Arikawa, “Polarisation-dependent colour vision in Papilio butterflies,” J. Exp. Biol. 204(Pt 14), 2469–2480 (2001).
[PubMed]

J. M. Douglas, T. W. Cronin, T.-H. Chiou, and N. J. Dominy, “Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae),” J. Exp. Biol. 210(5), 788–799 (2007).
[Crossref] [PubMed]

D. G. Stavenga, A. Matsushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” J. Exp. Biol. 215(4), 657–662 (2012).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6(Suppl 2), S193–S201 (2009).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a Morpho-butterfly-scale quasistructure,” Jpn. J. Appl. Phys. 44(11L), L48–L50 (2005).
[Crossref]

Nanoscale (2)

Z. Han, S. Niu, C. Shang, Z. Liu, and L. Ren, “Light trapping structures in wing scales of butterfly Trogonoptera brookiana,” Nanoscale 4(9), 2879–2883 (2012).
[Crossref] [PubMed]

Z. Han, S. Niu, M. Yang, J. Zhang, W. Yin, and L. Ren, “An ingenious replica templated from the light trapping structure in butterfly wing scales,” Nanoscale 5(18), 8500–8506 (2013).
[Crossref] [PubMed]

Nature (4)

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

A. Kelber, “Why ‘false’ colours are seen by butterflies,” Nature 402(6759), 251 (1999).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 619–626 (2011).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. P. Vigneron, K. Kertész, Z. Vértesy, M. Rassart, V. Lousse, Z. Bálint, and L. P. Biró, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021903 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

PLoS ONE (1)

S. Kleinlogel and A. G. White, “The secret world of shrimps: polarisation vision at its best,” PLoS ONE 3(5), e2190 (2008).
[Crossref] [PubMed]

Prog. Mater. Sci. (2)

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

P. Y. Chen, J. McKittrick, and M. A. Meyers, “Biological materials: functional adaptations and bioinspired designs,” Prog. Mater. Sci. 57(8), 1492–1704 (2012).
[Crossref]

Other (9)

Y. Liao, Polarization optics (Science, Beijing, 2003)

G. P. Konnen, Polarized light in nature (Cambridge University, 1985), Chap. 3.

M. Kolle, Photonic structures inspired by nature (Springer& Heidelberg, 2011), Chap. 12.

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales,” Interface Focus, rsfs20110082 (2012).

S. N. Gorb and P. Vukusic, Functional surfaces in biology: Little Structures with Big Effects, (Springer Science & Business Media, 2009), Chap. 7.

D. H. Goldstein, Polarized Light, (Taylor & Francis, 2010).

J. S. Baba, The use of polarized light for biomedical applications, (Texas A&M University, 2003).

Y. F. Li, A study on the use of polarized light in application to noninvasive tissue diagnostics, (Diss. University of Toledo, 2005).

T. Scharf, Polarized light in liquid crystals and polymers, (John Wiley & Sons, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Morphology and polarized microscope images of the investigated butterflies. (A) Photograph of C.excels dorsal surface. (A’) Polarized microscope image of C.excels scales at 90° azimuth. (A”) Polarized microscope image of C.excels scales at 45° azimuth. (A”’) Polarized microscope image of C.excels scales at 0° azimuth. (B) Photograph of T.a.kaguya dorsal surface. (B’) Polarized microscope image of T.a.kaguya scales at 90° azimuth. (B”) Polarized microscope image of T.a.kaguya scales at 45° azimuth. (B”’) Polarized microscope image of T.a.kaguya scales at 0° azimuth. (C) Photograph of O.p.poseidon dorsal surface. (C’) Polarized microscope image of O.p.poseidon scales at 90° azimuth. (C”) Polarized microscope image of O.p.poseidon scales at 45° azimuth. (C”’) Polarized microscope image of O.p.poseidon scales at 0° azimuth. (D) Photograph of M.sulkowskyi dorsal surface. (D’) Polarized microscope image of M.sulkowskyi scales at 90°azimuth. (D”) Polarized microscope image of M.sulkowskyi scales at 45° azimuth. (D”’) Polarized microscope image of M.sulkowskyi scales at 0° azimuth. (E) Photograph of A.m.eudaemon ventral surface. (E’) Polarized microscope image of A.m.eudaemon scales at 90° azimuth. (E”) Polarized microscope image of A.m.eudaemon scales at 45° azimuth. (E”’) Polarized microscope image of A.m.eudaemon scales at 0° azimuth. (F) Photograph of P.sesostris dorsal surface. (F’) Polarized microscope image of P.sesostris scales at 90° azimuth. (F”) Polarized microscope image of P.sesostris scales at 45° azimuth. (F”’) Polarized microscope image of P.sesostris scales at 0° azimuth. Scales bar: (Column 1) 2cm; (column 2, 3, and 4): 50μm.
Fig. 2
Fig. 2 FESEM and TEM images and spectra of investigated butterflies. (A) FESEM images of C.excels wing scale. (A’) TEM images of C.excels wing scale. (A”) Absorption spectrum (dotted line) and reflected spectrum (solid line) of C.excels scales (B) FESEM images of T.a.kaguya wing scale. (B’) TEM images of T.a.kaguya wing scale. (B”) Absorption spectrum (dotted line) and reflected spectrum (solid line) of T.a.kaguya scales (C) FESEM images of O.p.poseidon wing scale. (C’) TEM images of O.p.poseidon wing scale. (C”) Absorption spectrum (dotted line) and reflected spectrum (solid line) of O.p.poseidon scales (D) FESEM images of M.sulkowskyi wing scale. (D’) TEM images of M.sulkowskyi wing scale. (D”) Absorption spectrum (dotted line) and reflected spectrum (solid line) of M.sulkowskyi scales (E) FESEM images of A.m.eudaemon wing scale. (E’) TEM images of A.m.eudaemon wing scale. (E”) Absorption spectrum (dotted line) and reflected spectrum (solid line) of A.m.eudaemon scales (F) FESEM images of P.sesostris wing scale. (F’) TEM images of P.sesostris wing scale. (F”) Absorption spectrum (dotted line) and reflected spectrum (solid line) of P.sesostris scales. Scales bar: (Column 1and 2): 1μm.
Fig. 3
Fig. 3 Simplified scale models and simulated s-polarization reflected spectra of the butterfly scales with structural color. (A) The simplified M.sulkowskyi scale model is at 45°azimuth. (A’) The simulated s-polarization reflected spectrum of the M.sulkowskyi blue scale. (B) The simplified A.m.eudaemon scale model is at 45°azimuth. (B’) The simulated s-polarization reflected spectrum of the A.m.eudaemon blue scale. (C) The simplified O.p.poseidon scale model is at 45°azimuth. (C’) The simulated s-polarization reflected spectrum of the O.p.poseidon green scale. (D) The simplified P.sesostris scale model is at 45°azimuth. (D’) The simulated s-polarization reflected spectrum of the P.sesostris green scale.
Fig. 4
Fig. 4 Simplified Model-A and the simulated s-polarization reflected spectra about the upper rectangular grating with bottom multilayer architecture. (A) The Model-A comprised of upper rectangular grating with bottom multilayer is at 45°azimuth. (B) The influence of h on the s-polarization reflected spectra of Model-A at 90° azimuth. (C) The influence of h on the s-polarization reflected spectra of Model-A at 45°azimuth. (D) The influence of Λ on the s-polarization reflected of Model-A at 45°azimuth.
Fig. 5
Fig. 5 Simplified Model-B and the simulated s-polarization reflected spectra about the upper triangular grating with bottom multilayer architecture. (A) The Model-B comprised of upper triangular grating with bottom multilayer is 45°azimuth. (B) The influence of Λ on the s-polarization reflected spectra. (C) The influence of h on the s-polarization reflected spectra.
Fig. 6
Fig. 6 Influence of wpillar on simulated s-polarized reflectance spectra (A)The simulated M.sulkowskyi scale model is at 45°azimuth and wpillar is the width of the middle pillar. (B) The simulated s-polarized reflectance spectra under normal incident p-polarized light.

Tables (3)

Tables Icon

Table 1 Dimensional parameters of the simplified scale model

Tables Icon

Table 2 Dimensional parameters of the rectangular grating of Model-A

Tables Icon

Table 3 Dimensional parameters of the triangular grating of Model-B

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ n // 2 = f c n c 2 +(1 f c ) n air 2 1 n 2 = f c n c 2 + 1 f c n air 2
{ n // 2 = f c n c 2 +(1 f c )/( f c n c 2 + 1 f c n air 2 ) 1 n 2 = f c n c 2 + 1 f c f c n c 2 +(1 f c ) n air 2
δ=2* 2π λ ( n // n )h
I R (s)= I 0 R sin 2 ( δ 2 )sin(π2θ)sin(2θ)
δ=2 0 H 2π λ ( n // n ) d h
δ=2* 2π λ [( n // n ) h +( n // n ) h +...+( n // m n m ) h m ]

Metrics