Abstract

We present experimental and numerical investigations of Kerr nonlinearity compensation in a 400-km standard single-mode fiber link with distributed Raman amplification with backward pumping. A dual-pump polarization-independent fiber-based optical parametric amplifier is used for mid-link spectral inversion of 5 × 28-GBd polarization-multiplexed 16-QAM signals. Signal quality factor (Q-factor) improvements of 1.1 dB and 0.8 dB were obtained in the cases of a single-channel and a five-channel wavelength-division multiplexing (WDM) system, respectively. The experimental results are compared to numerical simulations with good agreement. It is also shown with simulations that a maximum transmission reach of 2400 km enabled by the optical phase conjugator is possible for the WDM signal.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

Hao Hu, Robert M. Jopson, Alan H. Gnauck, Sebastian Randel, and S. Chandrasekhar
Opt. Express 25(3) 1618-1628 (2017)

Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation

Takeshi Umeki, Takushi Kazama, Akihide Sano, Kohki Shibahara, Kenya Suzuki, Masashi Abe, Hirokazu Takenouchi, and Yutaka Miyamoto
Opt. Express 24(15) 16945-16951 (2016)

Multi-channel nonlinearity compensation of PDM-QPSK signals in dispersion-managed transmission using dispersion-folded digital backward propagation

Cen Xia, Xiang Liu, S. Chandrasekhar, N. K. Fontaine, Likai Zhu, and G. Li
Opt. Express 22(5) 5859-5866 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [Crossref]
  2. V. Mikhailov, R. I. Killey, J. Prat, and P. Bayvel, “Limitation to WDM transmission distance due to cross-phase modulation induced spectral broadening in dispersion compensated standard fiber systems,” IEEE Photon. Technol. Lett. 11(8), 994–996 (1999).
    [Crossref]
  3. M. Morshed, A. J. Lowery, and L. B. Du, “Improving performance of optical phase conjugation by splitting the nonlinear element,” Opt. Express 21(4), 4567–4577 (2013).
    [Crossref] [PubMed]
  4. C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
    [Crossref]
  5. L. Molle, M. Seimetz, D.-D. Gross, R. Freund, and M. Rohde, “Polarization multiplexed 20 Gbaud square 16-QAM long-haul transmission over 1120 km using EDFA amplification,” Proc. European Conference on Optical Communication, (ECOC), 8.4.4 (2009).
  6. X. Chen, X. Liu, S. Chandrasekhar, B. Zhu, and R. W. Tkach, “Experimental demonstration of fiber nonlinearity mitigation using digital phase conjugation,” Proc. Optical Fiber Communication. Conference (OFC), OTh3c.1, (2012).
    [Crossref]
  7. D. Rafique and A. D. Ellis, “Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations,” Opt. Express 19(18), 16919–16926 (2011).
    [Crossref] [PubMed]
  8. E. Ip, “Nonlinearity compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [Crossref]
  9. E. Mateo, M.-F. Huang, F. Yaman, T. Wang, Y. Aono, and T. Tajima, “Nonlinearity compensation using very low complexity backward propagation in dispersion managed links,” Proc. Optical Fiber Communication. Conference (OFC), OTh3C.4, (2012).
    [Crossref]
  10. S. L. Jansen, D. van den Borne, P. M. Krummerich, S. Spälter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
    [Crossref]
  11. F. Da Ros, I. Sackey, R. Elschner, T. Richter, C. Meuer, M. Nölle, M. Jazayerifar, K. Petermann, C. Peucheret, and C. Schubert, “Kerr nonlinearity compensation in a 5x28-GBd PDM 16-QAM WDM system using fiber-based optical phase conjugation,” Proc. European Conference on Optical Communication, ECOC, P.5.3, (2014).
  12. M. Pelusi, “All-optical compensation of fiber nonlinearity by phase conjugation,” in Proceedings of the OptoElectronics and Communications Conference. OECC, WS4–7, (2013).
  13. P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
    [Crossref]
  14. S. L. I. Olsson, T. A. Eriksson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Linear and nonlinear transmission of 16-QAM Over 105 km phase-sensitive amplified link,” Proc. Optical Fiber Communication. Conference (OFC), OTh1h.3, (2014).
    [Crossref]
  15. M. F. C. Stephens, M. Tan, I. D. Phillips, S. Sygletos, P. Harper, and N. J. Doran, “1.14 Tb/s DP-QPSK WDM polarization-diverse optical phase conjugation,” Opt. Express 22(10), 11840–11848 (2014).
    [Crossref] [PubMed]
  16. I. Sackey, F. Da Ros, T. Richter, R. Elschner, M. Jazayerifar, C. Meuer, C. Peucheret, K. Petermann, and C. Schubert, “Design and performance evaluation of an OPC device using a dual-pump polarization-independent FOPA,” Proc. European Conference on Optical Communication, ECOC, Tu.1.4.4, (2014).
  17. H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. J. McKinstrie, “Parametric amplification and wavelength conversion of a 2.048-Tb/s WDM PDM 16-QAM signal,” Proc. European Conference on Optical Communication, ECOC, We.2.5.2, (2014).
  18. I. D. Philips, M. Tan, M. F. C. Stephens, M. E. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. Randel, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the nonlinear-Shannon limit using Raman laser based amplification and optical phase conjugation,” Proc. Optical Fiber Communication. Conference (OFC), M3C.1, (2014).
    [Crossref]
  19. H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. J. McKinstrie, “Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations,” Proc. Optical Fiber Communication. Conference (OFC), OTh3c.1, (2014).
    [Crossref]
  20. K. Solis-Trapala, T. Inoue, and S. Namiki, “Signal power asymmetry tolerance of an optical phase conjugation-based nonlinear compensation system,” Proc. European Conference on Optical Communication, ECOC, We.2.5.4, (2014).
  21. X. Liu, S. Chandrasekhar, P. J. Winzer, R. W. Tkach, and A. R. Chraplyvy, “Fiber-nonlinearity-tolerant superchannel transmission via nonlinear noise squeezing and generalized phase-conjugated twin waves,” J. Lightwave Technol. 32(4), 766–775 (2014).
    [Crossref]
  22. Y. Tian, Y.-K. Huang, S. Zhang, P. R. Prucnal, and T. Wang, “Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy,” Opt. Express 21(4), 5099–5106 (2013).
    [PubMed]
  23. S. K. Ibrahim, J. Zhao, F. C. G. Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
    [Crossref]
  24. T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
    [Crossref]
  25. D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
    [Crossref]
  26. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
    [Crossref]
  27. J. Bromage, “Raman amplification for fiber communication systems,” J. Lightwave Technol. 22(1), 79–93 (2004).
    [Crossref]
  28. M. Islam, “Statistics of polarization dependent gain in Raman fiber amplifiers due to PMD,” Proc. Conference on Lasers and Electro-Optics (CLEO), CTuJ, (2001).

2014 (2)

2013 (2)

2012 (1)

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

2011 (3)

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[Crossref]

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

D. Rafique and A. D. Ellis, “Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations,” Opt. Express 19(18), 16919–16926 (2011).
[Crossref] [PubMed]

2010 (3)

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[Crossref]

E. Ip, “Nonlinearity compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
[Crossref]

S. K. Ibrahim, J. Zhao, F. C. G. Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[Crossref]

2006 (1)

S. L. Jansen, D. van den Borne, P. M. Krummerich, S. Spälter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

2004 (1)

2002 (1)

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[Crossref]

1999 (1)

V. Mikhailov, R. I. Killey, J. Prat, and P. Bayvel, “Limitation to WDM transmission distance due to cross-phase modulation induced spectral broadening in dispersion compensated standard fiber systems,” IEEE Photon. Technol. Lett. 11(8), 994–996 (1999).
[Crossref]

1997 (1)

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

Antony, C.

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

Bayvel, P.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[Crossref]

V. Mikhailov, R. I. Killey, J. Prat, and P. Bayvel, “Limitation to WDM transmission distance due to cross-phase modulation induced spectral broadening in dispersion compensated standard fiber systems,” IEEE Photon. Technol. Lett. 11(8), 994–996 (1999).
[Crossref]

Behrens, C.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[Crossref]

Bromage, J.

Cassidy, D.

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

Chandrasekhar, S.

Chen, M.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[Crossref]

Chraplyvy, A. R.

Cotter, D.

de Waardt, H.

S. L. Jansen, D. van den Borne, P. M. Krummerich, S. Spälter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Doran, N. J.

Du, L. B.

Ellis, A. D.

D. Rafique and A. D. Ellis, “Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations,” Opt. Express 19(18), 16919–16926 (2011).
[Crossref] [PubMed]

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[Crossref]

S. K. Ibrahim, J. Zhao, F. C. G. Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[Crossref]

Elschner, R.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

Fabbri, S. J.

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

Frascella, P.

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

S. K. Ibrahim, J. Zhao, F. C. G. Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[Crossref]

Gandhe, A.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

Gunning, F. C. G.

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

S. K. Ibrahim, J. Zhao, F. C. G. Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[Crossref]

Gunning, P.

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

Harper, P.

Huang, Y.-K.

Ibrahim, S. K.

S. K. Ibrahim, J. Zhao, F. C. G. Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[Crossref]

Ip, E.

Islam, M. N.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[Crossref]

Jansen, S. L.

S. L. Jansen, D. van den Borne, P. M. Krummerich, S. Spälter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Khoe, G. D.

S. L. Jansen, D. van den Borne, P. M. Krummerich, S. Spälter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Killey, R. I.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[Crossref]

V. Mikhailov, R. I. Killey, J. Prat, and P. Bayvel, “Limitation to WDM transmission distance due to cross-phase modulation induced spectral broadening in dispersion compensated standard fiber systems,” IEEE Photon. Technol. Lett. 11(8), 994–996 (1999).
[Crossref]

Krummerich, P. M.

S. L. Jansen, D. van den Borne, P. M. Krummerich, S. Spälter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Liu, X.

Lowery, A. J.

Manyuk, C. R.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

Marcuse, D.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

McAuliffe, W.

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

Mikhailov, V.

V. Mikhailov, R. I. Killey, J. Prat, and P. Bayvel, “Limitation to WDM transmission distance due to cross-phase modulation induced spectral broadening in dispersion compensated standard fiber systems,” IEEE Photon. Technol. Lett. 11(8), 994–996 (1999).
[Crossref]

Morshed, M.

Petermann, K.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

Peters, F. H.

S. K. Ibrahim, J. Zhao, F. C. G. Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[Crossref]

Phillips, I. D.

Prat, J.

V. Mikhailov, R. I. Killey, J. Prat, and P. Bayvel, “Limitation to WDM transmission distance due to cross-phase modulation induced spectral broadening in dispersion compensated standard fiber systems,” IEEE Photon. Technol. Lett. 11(8), 994–996 (1999).
[Crossref]

Prucnal, P. R.

Rafique, D.

Richter, T.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

Savory, S. J.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[Crossref]

Schubert, C.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

Spälter, S.

S. L. Jansen, D. van den Borne, P. M. Krummerich, S. Spälter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Stephens, M. F. C.

Sygletos, S.

Tan, M.

Tian, Y.

Tkach, R. W.

van den Borne, D.

S. L. Jansen, D. van den Borne, P. M. Krummerich, S. Spälter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Wai, P. K. A.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

Wang, T.

Winzer, P. J.

Zhang, S.

Zhao, J.

S. K. Ibrahim, J. Zhao, F. C. G. Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[Crossref]

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. L. Jansen, D. van den Borne, P. M. Krummerich, S. Spälter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single- and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[Crossref]

IEEE Photon. J. (1)

S. K. Ibrahim, J. Zhao, F. C. G. Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (3)

P. Frascella, C. Antony, S. J. Fabbri, F. C. G. Gunning, P. Gunning, W. McAuliffe, D. Cassidy, and A. D. Ellis, “Impact of Raman amplification on a 2-Tb/s coherent WDM system,” IEEE Photon. Technol. Lett. 23(14), 959–961 (2011).
[Crossref]

V. Mikhailov, R. I. Killey, J. Prat, and P. Bayvel, “Limitation to WDM transmission distance due to cross-phase modulation induced spectral broadening in dispersion compensated standard fiber systems,” IEEE Photon. Technol. Lett. 11(8), 994–996 (1999).
[Crossref]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (4)

Other (12)

I. Sackey, F. Da Ros, T. Richter, R. Elschner, M. Jazayerifar, C. Meuer, C. Peucheret, K. Petermann, and C. Schubert, “Design and performance evaluation of an OPC device using a dual-pump polarization-independent FOPA,” Proc. European Conference on Optical Communication, ECOC, Tu.1.4.4, (2014).

H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. J. McKinstrie, “Parametric amplification and wavelength conversion of a 2.048-Tb/s WDM PDM 16-QAM signal,” Proc. European Conference on Optical Communication, ECOC, We.2.5.2, (2014).

I. D. Philips, M. Tan, M. F. C. Stephens, M. E. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. Randel, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the nonlinear-Shannon limit using Raman laser based amplification and optical phase conjugation,” Proc. Optical Fiber Communication. Conference (OFC), M3C.1, (2014).
[Crossref]

H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. J. McKinstrie, “Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations,” Proc. Optical Fiber Communication. Conference (OFC), OTh3c.1, (2014).
[Crossref]

K. Solis-Trapala, T. Inoue, and S. Namiki, “Signal power asymmetry tolerance of an optical phase conjugation-based nonlinear compensation system,” Proc. European Conference on Optical Communication, ECOC, We.2.5.4, (2014).

S. L. I. Olsson, T. A. Eriksson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Linear and nonlinear transmission of 16-QAM Over 105 km phase-sensitive amplified link,” Proc. Optical Fiber Communication. Conference (OFC), OTh1h.3, (2014).
[Crossref]

F. Da Ros, I. Sackey, R. Elschner, T. Richter, C. Meuer, M. Nölle, M. Jazayerifar, K. Petermann, C. Peucheret, and C. Schubert, “Kerr nonlinearity compensation in a 5x28-GBd PDM 16-QAM WDM system using fiber-based optical phase conjugation,” Proc. European Conference on Optical Communication, ECOC, P.5.3, (2014).

M. Pelusi, “All-optical compensation of fiber nonlinearity by phase conjugation,” in Proceedings of the OptoElectronics and Communications Conference. OECC, WS4–7, (2013).

L. Molle, M. Seimetz, D.-D. Gross, R. Freund, and M. Rohde, “Polarization multiplexed 20 Gbaud square 16-QAM long-haul transmission over 1120 km using EDFA amplification,” Proc. European Conference on Optical Communication, (ECOC), 8.4.4 (2009).

X. Chen, X. Liu, S. Chandrasekhar, B. Zhu, and R. W. Tkach, “Experimental demonstration of fiber nonlinearity mitigation using digital phase conjugation,” Proc. Optical Fiber Communication. Conference (OFC), OTh3c.1, (2012).
[Crossref]

E. Mateo, M.-F. Huang, F. Yaman, T. Wang, Y. Aono, and T. Tajima, “Nonlinearity compensation using very low complexity backward propagation in dispersion managed links,” Proc. Optical Fiber Communication. Conference (OFC), OTh3C.4, (2012).
[Crossref]

M. Islam, “Statistics of polarization dependent gain in Raman fiber amplifiers due to PMD,” Proc. Conference on Lasers and Electro-Optics (CLEO), CTuJ, (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup showing the: (a) 400 km SSMF transmission link with backward-pumped distributed Raman amplification (Tx: transmitter, Rx: receiver), (b) Tx: 28-GBd PDM 16-QAM transmitter, (c) Rx: coherent receiver, (d) dual-pump polarization-independent FOPA used as OPC device.
Fig. 2
Fig. 2 A 5-channel OPC output spectrum showing 5-dB signal on-off gain and 4-dB conjugated signal conversion efficiency measured after a 20-dB monitor coupler.
Fig. 3
Fig. 3 Plot of Q-factor as a function of launch power per polarization for the single channel scenario showing the experimental results for the cases with and without OPC with the corresponding experimental constellation diagrams at a launch power of + 2 dBm/pol.
Fig. 4
Fig. 4 Plot of Q factor as a function of launch power/ch/pol for the WDM scenario showing both the experimental and numerical simulation results for the cases with and without OPC with the corresponding experimental constellation diagrams at a launch power of + 2 dBm/ch/pol. The center channel was used in the WDM investigations.
Fig. 5
Fig. 5 Q factor improvement for the individual WDM channels, the blue star indicates the Q-factor improvement in the single-channel case, indicates the Q-factor improvement in the single-channel case.
Fig. 6
Fig. 6 Numerical simulations showing Q-factor versus reach of the link for the cases with and without OPC obtained at the optimum launch power levels.
Fig. 7
Fig. 7 Numerical simulation results showing Q-factor versus launch power per channel plot of an 11-channel WDM scenario for the cases with and without OPC over a 400-km SSMF link.
Fig. 8
Fig. 8 Numerical simulation results showing the relative power distribution over the length for a 100-km and 70-km fiber spans. Both fibers are amplified with a backward-pumped DRA such that the output and input powers are the same.

Metrics