Abstract

Silver (Ag) grid transparent electrode is one of the most promising transparent conducting electrodes (TCEs) to replace conventional indium tin oxide (ITO). We systematically investigate an effect of geometric lattice modifications on optical and electrical properties of Ag grid electrode. The reference Ag grid with 5 μm width and 100 μm pitch (duty of 0.05) prepared by conventional photo-lithography and lift-off processes shows the sheet resistance of 13.27 Ω/sq, transmittance of 81.1%, and resultant figure of merit (FOM) of 129.05. Three different modified Ag grid electrodes with stripe added-mesh (SAM), triangle-added mesh (TAM), and diagonal-added mesh (DAM) are suggested to improve optical and electrical properties. Although all three of SAM, TAM, and DAM Ag grid electrodes exhibit the lower transmittance values of about 72 - 77%, they showed much decreased sheet resistance of 6 - 8 Ω/sq. As a result, all of the lattice-modified Ag grid electrodes display significant improvement of FOM and the highest value of 171.14 is obtained from DAM Ag grid, which is comparable to that of conventional ITO electrode (175.46). Also, the feasibility of DAM Ag gird electrode for use in organic solar cell is confirmed by finite difference time domain (FDTD) simulations. Unlike a conventional ITO electrode, DAM Ag grid electrode can induce light scattering and trapping due to the diffuse transmission that compensates for the loss in optical transparency, resulting in comparable light absorption in the photo active layer of poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM). P3HT:PC60BM based OSCs with the DAM Ag grid electrode were fabricated, which also showed the potential for ITO-free transparent electrode.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods

Ming-Yi Lin, Shang-Hsuan Wu, Li-Jen Hsiao, Widhya Budiawan, Karunakara Moorthy Boopathi, Wei-Chen Tu, Yia-Chung Chang, and Chih-Wei Chu
Opt. Express 24(16) 17910-17915 (2016)

Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells

Inho Kim, Taek Seong Lee, Doo Seok Jeong, Wook Seong Lee, Won Mok Kim, and Kyeong-Seok Lee
Opt. Express 21(S4) A669-A676 (2013)

Embedded Ag mesh electrodes for polymer dispersed liquid crystal devices on flexible substrate

Yanhua Liu, Su Shen, Jin Hu, and Linsen Chen
Opt. Express 24(22) 25774-25784 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
    [Crossref] [PubMed]
  2. B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environ. Sci. 2(3), 251–261 (2009).
    [Crossref]
  3. K.-D. Chang, C.-Y. Li, J.-W. Pan, and K.-Y. Cheng, “A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel,” Opt. Express 22(S2), A567–A576 (2014).
    [Crossref] [PubMed]
  4. K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
    [Crossref] [PubMed]
  5. P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
    [Crossref] [PubMed]
  6. T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications,” Thin Solid Films 516(7), 1314–1321 (2008).
    [Crossref]
  7. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1–2), 201–205 (2001).
    [Crossref]
  8. V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5(12), 10055–10064 (2011).
    [Crossref] [PubMed]
  9. B. Park and H. G. Jeon, “Spontaneous buckling in flexible organic light-emitting devices for enhanced light extraction,” Opt. Express 19(S5), A1117–A1125 (2011).
    [Crossref] [PubMed]
  10. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent pedot:pss films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
    [Crossref]
  11. R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Adv. Funct. Mater. 23(12), 1490–1499 (2013).
    [Crossref]
  12. B.-J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes,” Opt. Express 18(22), 23030–23034 (2010).
    [Crossref] [PubMed]
  13. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref] [PubMed]
  14. H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
    [Crossref] [PubMed]
  15. S. Lee, D. R. Mason, S. In, and N. Park, “Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance,” Opt. Express 22(S4), A1145–A1152 (2014).
    [Crossref] [PubMed]
  16. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [Crossref] [PubMed]
  17. C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, “Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography,” Nat. Commun. 5, 3121 (2014).
    [Crossref] [PubMed]
  18. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
    [Crossref] [PubMed]
  19. M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
    [Crossref]
  20. A. I. Mares and J. M. van Ruitenbeek, “Observation of shell effects in nanowires for the noble metals Cu, Ag, and Au,” Phys. Rev. B 72(20), 205402 (2005).
    [Crossref]
  21. J. Zou, H.-L. Yip, S. K. Hau, and A. K. Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
    [Crossref]
  22. H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
    [Crossref] [PubMed]
  23. S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
    [Crossref] [PubMed]
  24. N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
    [Crossref] [PubMed]
  25. Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
    [Crossref]
  26. M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
    [Crossref] [PubMed]
  27. Y. Zhou, L. B. Hu, and G. Gruner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88(12), 123109 (2006).
    [Crossref]
  28. I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4), A669–A676 (2013).
    [Crossref] [PubMed]
  29. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]

2014 (6)

C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, “Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography,” Nat. Commun. 5, 3121 (2014).
[Crossref] [PubMed]

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

K.-D. Chang, C.-Y. Li, J.-W. Pan, and K.-Y. Cheng, “A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel,” Opt. Express 22(S2), A567–A576 (2014).
[Crossref] [PubMed]

S. Lee, D. R. Mason, S. In, and N. Park, “Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance,” Opt. Express 22(S4), A1145–A1152 (2014).
[Crossref] [PubMed]

2013 (5)

I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4), A669–A676 (2013).
[Crossref] [PubMed]

R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Adv. Funct. Mater. 23(12), 1490–1499 (2013).
[Crossref]

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

2012 (2)

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent pedot:pss films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

2011 (4)

B. Park and H. G. Jeon, “Spontaneous buckling in flexible organic light-emitting devices for enhanced light extraction,” Opt. Express 19(S5), A1117–A1125 (2011).
[Crossref] [PubMed]

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5(12), 10055–10064 (2011).
[Crossref] [PubMed]

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

B.-J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes,” Opt. Express 18(22), 23030–23034 (2010).
[Crossref] [PubMed]

J. Zou, H.-L. Yip, S. K. Hau, and A. K. Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

2009 (2)

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environ. Sci. 2(3), 251–261 (2009).
[Crossref]

2008 (3)

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications,” Thin Solid Films 516(7), 1314–1321 (2008).
[Crossref]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

2006 (1)

Y. Zhou, L. B. Hu, and G. Gruner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88(12), 123109 (2006).
[Crossref]

2005 (1)

A. I. Mares and J. M. van Ruitenbeek, “Observation of shell effects in nanowires for the noble metals Cu, Ag, and Au,” Phys. Rev. B 72(20), 205402 (2005).
[Crossref]

2001 (1)

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Ahn, J.-H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Amjadi, M.

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

Andriessen, R.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Atwater, H. A.

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5(12), 10055–10064 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Bao, Z.

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent pedot:pss films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Blau, W. J.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Blom, P. W. M.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Boland, J. J.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Bredas, J.-L.

B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environ. Sci. 2(3), 251–261 (2009).
[Crossref]

Cava, C. E.

R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Adv. Funct. Mater. 23(12), 1490–1499 (2013).
[Crossref]

Chang, K.-D.

Chaudhary, S.

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Cheng, K.-Y.

Choi, D.-G.

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

Choi, J.-H.

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

Chonan, T.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Chua, S. J.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Chung, I.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Coleman, J. N.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Constant, K.

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Cotterell, B.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

De, S.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Doherty, E. M.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Eddy, C. R.

Eom, H.

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

Fan, C.-C.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Ferry, V. E.

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5(12), 10055–10064 (2011).
[Crossref] [PubMed]

Galagan, Y.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Gruner, G.

Y. Zhou, L. B. Hu, and G. Gruner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88(12), 123109 (2006).
[Crossref]

Guenther, E.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Guo, C. F.

C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, “Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography,” Nat. Commun. 5, 3121 (2014).
[Crossref] [PubMed]

Guo, L. J.

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

Hamaguchi, T.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Hau, S. K.

J. Zou, H.-L. Yip, S. K. Hau, and A. K. Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[Crossref]

Higgins, T. M.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Hirata, M.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Hite, J.

Ho, K.-M.

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Hong, S.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

Hu, L. B.

Y. Zhou, L. B. Hu, and G. Gruner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88(12), 123109 (2006).
[Crossref]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

In, S.

Jen, A. K. Y.

J. Zou, H.-L. Yip, S. K. Hau, and A. K. Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[Crossref]

Jeon, H. G.

Jeong, D. S.

Jeong, H.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Jeong, J.-H.

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

Jung, G.-Y.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Jung, J.-H.

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

Jung, J.-Y.

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

Kamyshny, A.

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Kang, M.-G.

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

Kikuchi, Y.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Kim, B.-J.

Kim, D.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

Kim, G.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H.-J.

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

Kim, I.

Kim, J.

B.-J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes,” Opt. Express 18(22), 23030–23034 (2010).
[Crossref] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

Kim, J.-H.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Kim, K.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, M.-S.

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

Kim, S.-M.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Kim, T.-G.

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Kim, W. M.

Kim, Y. S.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kippelen, B.

B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environ. Sci. 2(3), 251–261 (2009).
[Crossref]

Ko, H. C.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Ko, S. H.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

Kroon, J. M.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Kuang, P.

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Kwon, I. K.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Kwon, J.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

Kwon, N.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Layani, M.

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Lee, E.

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

Lee, E.-S.

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

Lee, H.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

Lee, J.

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

Lee, J.-Y.

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

Lee, K.-H.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Lee, K.-S.

Lee, P.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

Lee, S.

Lee, S.-H.

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

Lee, T. S.

Lee, W. S.

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Leung, W.

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Li, C.-Y.

Lim, K.-H.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Lipomi, D. J.

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent pedot:pss films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Liu, Q.

C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, “Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography,” Nat. Commun. 5, 3121 (2014).
[Crossref] [PubMed]

Lyons, P. E.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Magdassi, S.

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Mahadevapuram, R. C.

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Mares, A. I.

A. I. Mares and J. M. van Ruitenbeek, “Observation of shell effects in nanowires for the noble metals Cu, Ag, and Au,” Phys. Rev. B 72(20), 205402 (2005).
[Crossref]

Mason, D. R.

Mastro, M. A.

Minami, T.

T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications,” Thin Solid Films 516(7), 1314–1321 (2008).
[Crossref]

Nalwa, K. S.

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Nirmalraj, P. N.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Nishiwaki, Y.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Omae, K.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Ozyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Pak, Y.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Pan, J.-W.

Park, B.

Park, I.

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

Park, J.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Park, J.-M.

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Park, N.

Pichitpajongkit, A.

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5(12), 10055–10064 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Ren, Z.

C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, “Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography,” Nat. Commun. 5, 3121 (2014).
[Crossref] [PubMed]

Roman, L. S.

R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Adv. Funct. Mater. 23(12), 1490–1499 (2013).
[Crossref]

Rubingh, J.-E. J. M.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Salvatierra, R. V.

R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Adv. Funct. Mater. 23(12), 1490–1499 (2013).
[Crossref]

Song, H.

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Sun, T.

C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, “Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography,” Nat. Commun. 5, 3121 (2014).
[Crossref] [PubMed]

Sung, S.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Suo, Z.

C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, “Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography,” Nat. Commun. 5, 3121 (2014).
[Crossref] [PubMed]

Taguchi, O.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Takebayashi, T.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Tanaka, A.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

van Ruitenbeek, J. M.

A. I. Mares and J. M. van Ruitenbeek, “Observation of shell effects in nanowires for the noble metals Cu, Ag, and Au,” Phys. Rev. B 72(20), 205402 (2005).
[Crossref]

Veenstra, S. C.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Vosgueritchian, M.

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent pedot:pss films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Wang, W.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Yeo, J.

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

Yi, I.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Yip, H.-L.

J. Zou, H.-L. Yip, S. K. Hau, and A. K. Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[Crossref]

Yoshioka, N.

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Zarbin, A. J. G.

R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Adv. Funct. Mater. 23(12), 1490–1499 (2013).
[Crossref]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, L. B. Hu, and G. Gruner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88(12), 123109 (2006).
[Crossref]

Zou, J.

J. Zou, H.-L. Yip, S. K. Hau, and A. K. Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[Crossref]

ACS Nano (3)

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5(12), 10055–10064 (2011).
[Crossref] [PubMed]

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink,” ACS Nano 7(6), 5024–5031 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent pedot:pss films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Adv. Funct. Mater. 23(12), 1490–1499 (2013).
[Crossref]

Adv. Mater. (3)

K.-H. Lee, S.-M. Kim, H. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, “All-solution-processed transparent thin film transistor and its application to liquid crystals driving,” Adv. Mater. 25(23), 3209–3214 (2013).
[Crossref] [PubMed]

P. Kuang, J.-M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

Appl. Phys. Lett. (2)

J. Zou, H.-L. Yip, S. K. Hau, and A. K. Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[Crossref]

Y. Zhou, L. B. Hu, and G. Gruner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88(12), 123109 (2006).
[Crossref]

Energy Environ. Sci. (1)

B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environ. Sci. 2(3), 251–261 (2009).
[Crossref]

Nano Lett. (1)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Nanoscale (1)

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, “Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography,” Nat. Commun. 5, 3121 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Occup. Environ. Med. (1)

T. Hamaguchi, K. Omae, T. Takebayashi, Y. Kikuchi, N. Yoshioka, Y. Nishiwaki, A. Tanaka, M. Hirata, O. Taguchi, and T. Chonan, “Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage,” Occup. Environ. Med. 65(1), 51–55 (2008).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. B (1)

A. I. Mares and J. M. van Ruitenbeek, “Observation of shell effects in nanowires for the noble metals Cu, Ag, and Au,” Phys. Rev. B 72(20), 205402 (2005).
[Crossref]

Small (2)

H.-J. Kim, S.-H. Lee, J. Lee, E.-S. Lee, J.-H. Choi, J.-H. Jung, J.-Y. Jung, and D.-G. Choi, “High-durable agni nanomesh film for a transparent conducting electrode,” Small 10(18), 3767–3774 (2014).
[Crossref] [PubMed]

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small 10(20), 4171–4181 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Thin Solid Films (2)

T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications,” Thin Solid Films 516(7), 1314–1321 (2008).
[Crossref]

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic illustration of Ag grid film process.
Fig. 2
Fig. 2 Optical microscope images of (a) reference, (b) SAM, (c) TAM, (d) DAM Ag grid films on glass substrates.
Fig. 3
Fig. 3 (a) Optical transmittance spectra of reference, SAM, TAM and DAM Ag grid films in the range of 380 - 800 nm. (b) Average transmittance as a function of sheet resistance and (c) figure of merit defined as the ratio of the electrical conductance and the optical conductance (σDC / σopt) as a function of grid geometry. (d) Photographs of ITO and DAM Ag grid film placed on our institute emblem.
Fig. 4
Fig. 4 FDTD simulation and real device results. (a) Simulated transmittance spectra of ITO and DAM Ag grid films. Light absorption maps in the OSCs with (b) ITO and (c) DAM Ag grid electrodes. (d) Calculated the total absorption spectra of photoactive layers in the devices with ITO and DAM Ag grid electrodes. (e) Representative J-V characteristics of an PTB7:PC70BM OSC with the Ag grid electrode and the ITO electrode device under AM 1.5 G illumination with 100 mW/cm2 intensity.

Tables (1)

Tables Icon

Table 1 Optical and electrical parameters of transmittance, sheet resistance, and figure of merit obtained from reference, SAM, TAM, DAM Ag grid and ITO films

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T= ( 1+ 188.5 R s σ opt σ dc ) 2 .

Metrics