Abstract

Optical conveyors are active tractor beams that selectively transport illuminated objects either upstream or downstream along their axes. Formed by the coherent superposition of coaxial Bessel beams, an optical conveyor features an axial array of equally spaced intensity maxima that act as optical traps for small objects. We demonstrate through measurements on colloidal spheres and numerical calculations based on the generalized Lorenz-Mie theory that optical conveyors’ interferometric structure endows them with trapping characteristics far superior to those of conventional optical tweezers. Optical conveyors form substantially stiffer traps and can transport a wider variety of materials over a much longer axial range.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of an optical conveyor for selective separation of a mixture of enantiomers

P. Acebal, L. Carretero, and S. Blaya
Opt. Express 25(26) 32290-32304 (2017)

Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization

Luis Carretero, Pablo Acebal, and Salvador Blaya
Opt. Express 22(3) 3284-3295 (2014)

Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber

Oliver A. Schmidt, Tijmen G. Euser, and Philip St.J. Russell
Opt. Express 21(24) 29383-29391 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. E. Smith, “Spacehounds of IPC,” Amazing Stories, July (1931).
  2. S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
    [Crossref] [PubMed]
  3. O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nature Photonics 7(2), 123–127 (2013).
    [Crossref]
  4. D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
    [Crossref] [PubMed]
  5. T. Čižmár, V. Garcés-Chávez, K. Dhokalia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
    [Crossref]
  6. T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8, 43 (2006).
    [Crossref]
  7. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
    [Crossref]
  8. A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).
    [Crossref] [PubMed]
  9. B. Sun, Y. Roichman, and D. G. Grier, “Theory of holographic optical trapping,” Opt. Express 16(20), 15765–15776 (2008).
    [Crossref] [PubMed]
  10. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref] [PubMed]
  11. Y. Roichman, I. Cholis, and D. G. Grier, “Volumetric imaging of holographic optical traps,” Opt. Express 14(22), 10907–10912 (2006).
    [Crossref] [PubMed]
  12. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  13. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15(26), 18275–18282 (2007).
    [Crossref] [PubMed]
  14. F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7(15), 6816–6819 (2011).
    [Crossref]
  15. B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82(1), 23–31 (2014).
    [Crossref]
  16. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
    [Crossref] [PubMed]
  17. H. Moyses, B. J. Krishnatreya, and D. G. Grier, “Robustness of holographic video microscopy against defects in illumination,” Opt. Express 21(5), 5968–5973 (2013).
    [Crossref] [PubMed]
  18. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiments and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
    [Crossref] [PubMed]
  19. E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
    [Crossref]
  20. Z. Bouchal and M. Olivk, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
    [Crossref]
  21. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
    [Crossref] [PubMed]
  22. J. M. Taylor and G. D. Love, “Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations,” J. Opt. Soc. Am. A 26(2), 278–282 (2009).
    [Crossref]
  23. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nature Photonics 5(9), 531–534 (2011).
    [Crossref]
  24. M. Šiler and P. Zemánek, “Optical forces in a non-diffracting vortex beam,” J. Quant. Spectr. Rad. Trans. 126, 78–83 (2013).
    [Crossref]
  25. N. Wang, J. Chen, S. Liu, and Z. Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
    [Crossref]
  26. G. Gouesbet, “T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates,” Opt. Comm. 283(4), 517–521 (2010).
    [Crossref]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1987).
  28. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag, 2011).
    [Crossref]
  29. J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34(24), 5542–5551 (1995).
    [Crossref] [PubMed]
  30. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
    [Crossref]
  31. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
    [Crossref]
  32. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25(15), 1065–1067 (2000).
    [Crossref]
  33. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333(2), 848–872 (1988).
    [Crossref]
  34. S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
    [Crossref] [PubMed]
  35. A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109(2), 023902 (2012).
    [Crossref] [PubMed]
  36. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  37. K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, “Direct observation of vortex dynamics in superconducting films with regular arrays of defects,” Science 274(5290), 1167–1170 (1996).
    [Crossref] [PubMed]
  38. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
    [Crossref] [PubMed]
  39. T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
    [Crossref] [PubMed]
  40. M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
    [Crossref] [PubMed]
  41. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized beam,” Opt. Lett. 32(13), 1839–1841 (2007).
    [Crossref] [PubMed]
  42. M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48(32), 6143–6151 (2009).
    [Crossref] [PubMed]
  43. L. Carretero, P. Acebal, and S. Blaya, “Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization,” Opt. Express 22(3), 3284–3295 (2014).
    [Crossref] [PubMed]

2014 (2)

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82(1), 23–31 (2014).
[Crossref]

L. Carretero, P. Acebal, and S. Blaya, “Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization,” Opt. Express 22(3), 3284–3295 (2014).
[Crossref] [PubMed]

2013 (5)

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

H. Moyses, B. J. Krishnatreya, and D. G. Grier, “Robustness of holographic video microscopy against defects in illumination,” Opt. Express 21(5), 5968–5973 (2013).
[Crossref] [PubMed]

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nature Photonics 7(2), 123–127 (2013).
[Crossref]

M. Šiler and P. Zemánek, “Optical forces in a non-diffracting vortex beam,” J. Quant. Spectr. Rad. Trans. 126, 78–83 (2013).
[Crossref]

N. Wang, J. Chen, S. Liu, and Z. Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

2012 (2)

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109(2), 023902 (2012).
[Crossref] [PubMed]

D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

2011 (3)

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref] [PubMed]

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7(15), 6816–6819 (2011).
[Crossref]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nature Photonics 5(9), 531–534 (2011).
[Crossref]

2010 (3)

2009 (3)

2008 (3)

2007 (3)

2006 (2)

Y. Roichman, I. Cholis, and D. G. Grier, “Volumetric imaging of holographic optical traps,” Opt. Express 14(22), 10907–10912 (2006).
[Crossref] [PubMed]

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8, 43 (2006).
[Crossref]

2005 (3)

T. Čižmár, V. Garcés-Chávez, K. Dhokalia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiments and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[Crossref] [PubMed]

M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
[Crossref] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

2000 (1)

1998 (1)

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

1996 (1)

K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, “Direct observation of vortex dynamics in superconducting films with regular arrays of defects,” Science 274(5290), 1167–1170 (1996).
[Crossref] [PubMed]

1995 (2)

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333(2), 848–872 (1988).
[Crossref]

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

1986 (1)

1973 (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
[Crossref]

Acebal, P.

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Ashkin, A.

Barton, J. P.

J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34(24), 5542–5551 (1995).
[Crossref] [PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

Bell, B. A.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82(1), 23–31 (2014).
[Crossref]

Bjorkholm, J. E.

Blaya, S.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1987).

Bouchal, Z.

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8, 43 (2006).
[Crossref]

Z. Bouchal and M. Olivk, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Brzobohatý, O.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nature Photonics 7(2), 123–127 (2013).
[Crossref]

Carretero, L.

Chan, C. T.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nature Photonics 5(9), 531–534 (2011).
[Crossref]

Chaumet, P. C.

Chen, J.

N. Wang, J. Chen, S. Liu, and Z. Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nature Photonics 5(9), 531–534 (2011).
[Crossref]

Cheong, F. C.

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7(15), 6816–6819 (2011).
[Crossref]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
[Crossref] [PubMed]

Cholis, I.

Chu, S.

Chvátal, L.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nature Photonics 7(2), 123–127 (2013).
[Crossref]

Cižmár, T.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nature Photonics 7(2), 123–127 (2013).
[Crossref]

T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref] [PubMed]

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8, 43 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dhokalia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Colen-Landy, A.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82(1), 23–31 (2014).
[Crossref]

Dan, D.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Dhokalia, K.

T. Čižmár, V. Garcés-Chávez, K. Dhokalia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Dholakia, K.

Dogariu, A.

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref] [PubMed]

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333(2), 848–872 (1988).
[Crossref]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Dziedzic, J. M.

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Florin, E. L.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

Gao, P.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Garcés-Chávez, V.

T. Čižmár, V. Garcés-Chávez, K. Dhokalia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Gordon, J. P.

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
[Crossref]

Gouesbet, G.

G. Gouesbet, “T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates,” Opt. Comm. 283(4), 517–521 (2010).
[Crossref]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag, 2011).
[Crossref]

Gréhan, G.

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag, 2011).
[Crossref]

Grier, D. G.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82(1), 23–31 (2014).
[Crossref]

H. Moyses, B. J. Krishnatreya, and D. G. Grier, “Robustness of holographic video microscopy against defects in illumination,” Opt. Express 21(5), 5968–5973 (2013).
[Crossref] [PubMed]

D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7(15), 6816–6819 (2011).
[Crossref]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
[Crossref] [PubMed]

S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
[Crossref] [PubMed]

B. Sun, Y. Roichman, and D. G. Grier, “Theory of holographic optical trapping,” Opt. Express 16(20), 15765–15776 (2008).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15(26), 18275–18282 (2007).
[Crossref] [PubMed]

Y. Roichman, I. Cholis, and D. G. Grier, “Volumetric imaging of holographic optical traps,” Opt. Express 14(22), 10907–10912 (2006).
[Crossref] [PubMed]

M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Harada, K.

K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, “Direct observation of vortex dynamics in superconducting films with regular arrays of defects,” Science 274(5290), 1167–1170 (1996).
[Crossref] [PubMed]

Hasebe, P.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82(1), 23–31 (2014).
[Crossref]

Hayashi, T.

Heckenberg, N. R.

A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Horber, J. K. H.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1987).

Jones, J. R.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82(1), 23–31 (2014).
[Crossref]

Kamimura, O.

K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, “Direct observation of vortex dynamics in superconducting films with regular arrays of defects,” Science 274(5290), 1167–1170 (1996).
[Crossref] [PubMed]

Karásek, V.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nature Photonics 7(2), 123–127 (2013).
[Crossref]

Kasai, H.

K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, “Direct observation of vortex dynamics in superconducting films with regular arrays of defects,” Science 274(5290), 1167–1170 (1996).
[Crossref] [PubMed]

Kawauchi, H.

Kim, S.-H.

Knöener, G.

Knoner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Kollárová, V.

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8, 43 (2006).
[Crossref]

Kozawa, Y.

Krishnatreya, B. J.

Ladavac, K.

Lavrinenko, A.

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109(2), 023902 (2012).
[Crossref] [PubMed]

Lee, S.-H.

Lei, M.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Li, Z.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Lin, Z.

N. Wang, J. Chen, S. Liu, and Z. Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nature Photonics 5(9), 531–534 (2011).
[Crossref]

Liu, S.

N. Wang, J. Chen, S. Liu, and Z. Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Love, G. D.

Matsuda, T.

K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, “Direct observation of vortex dynamics in superconducting films with regular arrays of defects,” Science 274(5290), 1167–1170 (1996).
[Crossref] [PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Michihata, M.

Moshchalkov, V. V.

K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, “Direct observation of vortex dynamics in superconducting films with regular arrays of defects,” Science 274(5290), 1167–1170 (1996).
[Crossref] [PubMed]

Moyses, H.

Ng, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nature Photonics 5(9), 531–534 (2011).
[Crossref]

Nieminen, T. A.

A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Nieto-Vesperinas, M.

Novitsky, A.

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109(2), 023902 (2012).
[Crossref] [PubMed]

Olivk, M.

Z. Bouchal and M. Olivk, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

Pine, D. J.

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7(15), 6816–6819 (2011).
[Crossref]

Polin, M.

Pralle, A.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

Qi, Y.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Qian, J.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Qiu, C.-W.

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109(2), 023902 (2012).
[Crossref] [PubMed]

Rohrbach, A.

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiments and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[Crossref] [PubMed]

Roichman, Y.

Rubinsztein-Dunlop, H.

A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Ruffner, D. B.

D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

Sato, S.

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

Šiler, M.

M. Šiler and P. Zemánek, “Optical forces in a non-diffracting vortex beam,” J. Quant. Spectr. Rad. Trans. 126, 78–83 (2013).
[Crossref]

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nature Photonics 7(2), 123–127 (2013).
[Crossref]

Smith, E. E.

E. E. Smith, “Spacehounds of IPC,” Amazing Stories, July (1931).

Stelzer, E. H. K.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

Stilgoe, A. B.

A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Sukhov, S.

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref] [PubMed]

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

B. Sun, Y. Roichman, and D. G. Grier, “Theory of holographic optical trapping,” Opt. Express 16(20), 15765–15776 (2008).
[Crossref] [PubMed]

Sunda-Meya, A.

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82(1), 23–31 (2014).
[Crossref]

Takaya, Y.

Taylor, J. M.

Tonomura, A.

K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, “Direct observation of vortex dynamics in superconducting films with regular arrays of defects,” Science 274(5290), 1167–1170 (1996).
[Crossref] [PubMed]

van Blaaderen, A.

van Oostrum, P.

Wang, N.

N. Wang, J. Chen, S. Liu, and Z. Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

Xiao, K.

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7(15), 6816–6819 (2011).
[Crossref]

Yan, S.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Yang, S.-M.

Yang, Y.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Yao, B.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Ye, T.

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Yi, G.-R.

Yonezawa, K.

Zemánek, P.

M. Šiler and P. Zemánek, “Optical forces in a non-diffracting vortex beam,” J. Quant. Spectr. Rad. Trans. 126, 78–83 (2013).
[Crossref]

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nature Photonics 7(2), 123–127 (2013).
[Crossref]

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8, 43 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dhokalia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Am. J. Phys. (1)

B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, and D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82(1), 23–31 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A (1)

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

Appl. Phys. Lett. (1)

T. Čižmár, V. Garcés-Chávez, K. Dhokalia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333(2), 848–872 (1988).
[Crossref]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

J. Mod. Opt. (1)

Z. Bouchal and M. Olivk, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

J. Opt. A (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Quant. Spectr. Rad. Trans. (1)

M. Šiler and P. Zemánek, “Optical forces in a non-diffracting vortex beam,” J. Quant. Spectr. Rad. Trans. 126, 78–83 (2013).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Nature Photonics (2)

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nature Photonics 7(2), 123–127 (2013).
[Crossref]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nature Photonics 5(9), 531–534 (2011).
[Crossref]

New J. Phys. (1)

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8, 43 (2006).
[Crossref]

Opt. Comm. (1)

G. Gouesbet, “T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates,” Opt. Comm. 283(4), 517–521 (2010).
[Crossref]

Opt. Express (10)

M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
[Crossref] [PubMed]

Y. Roichman, I. Cholis, and D. G. Grier, “Volumetric imaging of holographic optical traps,” Opt. Express 14(22), 10907–10912 (2006).
[Crossref] [PubMed]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15(26), 18275–18282 (2007).
[Crossref] [PubMed]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
[Crossref] [PubMed]

H. Moyses, B. J. Krishnatreya, and D. G. Grier, “Robustness of holographic video microscopy against defects in illumination,” Opt. Express 21(5), 5968–5973 (2013).
[Crossref] [PubMed]

S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
[Crossref] [PubMed]

A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).
[Crossref] [PubMed]

B. Sun, Y. Roichman, and D. G. Grier, “Theory of holographic optical trapping,” Opt. Express 16(20), 15765–15776 (2008).
[Crossref] [PubMed]

L. Carretero, P. Acebal, and S. Blaya, “Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization,” Opt. Express 22(3), 3284–3295 (2014).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (2)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
[Crossref]

N. Wang, J. Chen, S. Liu, and Z. Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

Phys. Rev. Lett. (6)

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref] [PubMed]

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109(2), 023902 (2012).
[Crossref] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiments and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

PLoS ONE (1)

M. Lei, Z. Li, S. Yan, B. Yao, D. Dan, Y. Qi, J. Qian, Y. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8(3), e57984 (2013).
[Crossref] [PubMed]

Science (1)

K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, “Direct observation of vortex dynamics in superconducting films with regular arrays of defects,” Science 274(5290), 1167–1170 (1996).
[Crossref] [PubMed]

Soft Matter (1)

F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7(15), 6816–6819 (2011).
[Crossref]

Other (3)

E. E. Smith, “Spacehounds of IPC,” Amazing Stories, July (1931).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1987).

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag, 2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Experimental reconstruction of an optical conveyor η = 0.8, Δη = 0.04, and (b) η = 0.8, Δη = 0.086. (c) Measured trajectory of a 1.5 μm-diameter silica sphere trapped in one of the intensity maxima in (b). (d) Trajectory of the same particle trapped in a conventional optical tweezer projected by the same instrument with the same peak intensity. (e) Measured transverse and axial stiffness as a function Δη. (f) Stiffness ratio, kz/kr, as a function of Δη. Solid curves in (e) and (f) represent predictions of the Lorenz-Mie theory. Shaded bands represent uncertainty in the measured size and refractive index of the trapped silica sphere. Highlighted plot symbols represent results from (c) and (d). Dotted horizontal lines represent the measured performance of the optical tweezer. The dashed horizontal line in (f) shows the theoretical limit for optical tweezer performance. The shaded region above this line represents the optical conveyor’s superior performance for optical microma-nipulation.
Fig. 2
Fig. 2 (a) Trap stiffness as a function of particle size for silica spheres in the optical conveyor from Fig. 1(b). Predictions from Lorenz-Mie theory are plotted as solid curves, and the corresponding results in the dipole approximation are plotted as dashed curves. Discrete points show experimental results obtained from the data in Fig. 1(c).
Fig. 3
Fig. 3 (a) Experimental reconstruction of an optical conveyor with η = 0.96 and Δη = 0.04. (b) Trajectory of a 1.5 μm silica sphere transported by the same optical conveyor over a range of 66 μm. (c) Axial stiffness as a function of transport range. Solid curves show Lorenz-Mie predictions for optical conveyors transporting large (1.5 μm-diameter) and small (0.036 μm-diameter, kap = 0.5) silica spheres through water. Dashed curves show corresponding results for optical tweezers. Discrete symbols show results for the optical tweezer in Fig. 1(c) and the optical conveyors in Figs. 1(d) and 3(a).

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

E ( r , t ) = 1 2 E 0 e i ω t [ b 1 ( k r ) + e i φ ( t ) b 2 ( k r ) ] ,
b j ( k r ) = 0 2 π ε ^ ( θ j , ϕ ) e i k ( θ j , ϕ ) r d ϕ ,
ε ^ ( θ , ϕ ) = cos ϕ θ ^ + sin ϕ ϕ ^
k ( θ , ϕ ) = k ( sin θ cos ϕ x ^ + sin θ sin ϕ y ^ + cos θ z ^ )
b j ( k r ) J 0 ( 1 η j 2 k r ) e i η j k z x ^ ,
R A cot θ 1 = A η 1 1 η 1 2
z n ( t ) = 2 π n + φ ( t ) Δ η k ,
U ( r ) = 1 2 k r r 2 + 1 2 k z z 2 ,
b j ( r ) = n = 1 m = n n [ a m n ( θ j ) M n m ( 1 ) ( k r ) + b m n ( θ j ) N n m ( 1 ) ( k r ) ] ,
E s ( r , t ) = E 0 e i ω t n = 1 m = n n { [ r m n ( θ 1 ) + e i φ ( t ) r m n ( θ 2 ) ] M n m ( 3 ) ( k r ) + [ s m n ( θ 1 ) + e i φ ( t ) s m n ( θ 2 ) ] N n m ( 3 ) ( k r ) } ,
r m n ( θ j ) = a n a m n ( θ j ) and
s m n ( θ j ) = b n b m n ( θ j ) ,
F ( r , t ) = S n ^ T ( r , t ) d r ,
k ν = ν F ν ( r , t ) | r = r 0 ( t ) .
F ( r , t ) = 1 2 { α e ν = 1 3 E ν ( r , t ) E ν * ( r , t ) } ,
α e = 4 π ε 0 n m 2 K a p 3 1 i 2 3 K k 3 a p 3 ,
F z ( r , t ) E 0 2 1 4 α e Δ η sin ( Φ ( z , t ) ) + α e η cos 2 ( 1 2 Φ ( z , t ) )
F r ( r , t ) E 0 2 α e 1 2 ( 1 η 2 1 4 Δ η 2 ) k r cos 2 ( 1 2 Φ ( z , t ) ) + 1 4 α e η Δ η k r sin ( Φ ( z , t ) ) ,
Z n ( t ) z n ( t ) = 2 Δ η k tan 1 ( α e α e 2 η Δ η ) .
k z = 1 4 | α e | k E 0 2 Δ η 2 ,
k r = k z α e 2 ( 1 η 2 1 4 Δ η 2 ) 2 α e 2 η 2 1 2 α e 2 Δ η 2 + 2 α e 2 η 2 ,
R A 2 ( α e α e α e α e ) < R .
E G ( z , t ) = E 0 z R z 2 + z R 2 e i k z e i ζ ( z ) e i ω t ε ^ ,
F G ( z ) E 0 2 = 1 2 z R 2 z α e k ( z 2 z R 2 ) α e ( z 2 + z R 2 ) 2 ,
( α e α e ) 2 > 4 k z R ( k z R 1 ) .
R G = A 2 1 + 1 + ( α e α e ) 2 .

Metrics