Abstract

We demonstrate nanosecond scale rectangular wave-breaking-free pulse generation in an actively mode locked Yb-doped fiber laser based on a combined action of active periodic cavity loss modulation and nonlinear polarization rotation effect. The pulse width of the laser can be controlled in the range of 890 ps to above 124 ns instantaneously by adjusting the electrical signal applied on the modulator. As high as 19.8 nJ wave-breaking-free pulse is achieved with maximum available pump power. The output pulse temporal dynamics exhibit various distinct characteristics under different modulation and polarization control. The laser presents unusually flexible tunabilities in pulse width, pulse energy and pulse shape.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition

Lan Liu, Jun-Hong Liao, Qiu-Yi Ning, Wei Yu, Ai-Ping Luo, Shan-Hui Xu, Zhi-Chao Luo, Zhong-Min Yang, and Wen-Cheng Xu
Opt. Express 21(22) 27087-27092 (2013)

Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber

Nian Zhao, Meng Liu, Hao Liu, Xu-Wu Zheng, Qiu-Yi Ning, Ai-Ping Luo, Zhi-Chao Luo, and Wen-Cheng Xu
Opt. Express 22(9) 10906-10913 (2014)

Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser

Zhaochen Cheng, Huihui Li, Hongxing Shi, Jun Ren, Quan-Hong Yang, and Pu Wang
Opt. Express 23(6) 7000-7006 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10(1), 129–136 (2004).
    [Crossref]
  2. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  3. S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
    [Crossref] [PubMed]
  4. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon. 4(9), 611–622 (2010).
    [Crossref]
  5. H. Chen, S. Chen, Z. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
    [Crossref]
  6. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
  7. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002).
    [Crossref] [PubMed]
  8. F. Ö. Ilday, F. W. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27(17), 1531–1533 (2002).
    [Crossref] [PubMed]
  9. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [Crossref] [PubMed]
  10. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [Crossref] [PubMed]
  11. B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photon. 4(5), 307–311 (2010).
    [Crossref]
  12. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [Crossref]
  13. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
  14. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
    [Crossref] [PubMed]
  15. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photon. 6(2), 84–92 (2012).
    [Crossref]
  16. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
    [Crossref] [PubMed]
  17. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B 9(8), 1358–1361 (1992).
    [Crossref]
  18. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  19. W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
    [Crossref]
  20. N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
    [Crossref]
  21. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
    [Crossref]
  22. W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
    [Crossref]
  23. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
    [Crossref] [PubMed]
  24. Z.-C. Luo, W.-J. Cao, Z.-B. Lin, Z.-R. Cai, A.-P. Luo, and W.-C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
    [Crossref] [PubMed]
  25. L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
    [Crossref] [PubMed]
  26. L. Liu, J.-H. Liao, Q.-Y. Ning, W. Yu, A.-P. Luo, S.-H. Xu, Z.-C. Luo, Z.-M. Yang, and W.-C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
    [Crossref] [PubMed]
  27. X. Tian, M. Tang, X. Cheng, P. P. Shum, Y. Gong, and C. Lin, “High-energy wave-breaking-free pulse from all-fiber mode-locked laser system,” Opt. Express 17(9), 7222–7227 (2009).
    [Crossref] [PubMed]
  28. S.-K. Wang, Q.-Y. Ning, A.-P. Luo, Z.-B. Lin, Z.-C. Luo, and W.-C. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21(2), 2402–2407 (2013).
    [Crossref] [PubMed]
  29. J.-H. Yang, C.-Y. Guo, S.-C. Ruan, D.-Q. Ouyang, H.-Q. Lin, Y.-M. Wu, and R.-H. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
    [Crossref]
  30. W. Ye, J. Wang, T. Chen, and Y. H. Shen, “Multi-wavelength mode-locked Er/Yb Co-doped fiber laser with square nano-second pulse output,” Laser Phys. 21(10), 1784–1788 (2011).
    [Crossref]
  31. Z. Cheng, W. Sida, S. Hongxing, J. Xu, Q.-H. Yang, and P. Wang, “Dissipative soliton resonance in an all-normal-dispersion graphene oxide mode-locked Yb-doped fiber laser,” in CLEO: Science and Innovations (Optical Society of America, 2013), paper CM1I.6.

2014 (2)

S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
[Crossref] [PubMed]

H. Chen, S. Chen, Z. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

2013 (3)

2012 (3)

2011 (1)

W. Ye, J. Wang, T. Chen, and Y. H. Shen, “Multi-wavelength mode-locked Er/Yb Co-doped fiber laser with square nano-second pulse output,” Laser Phys. 21(10), 1784–1788 (2011).
[Crossref]

2010 (4)

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photon. 4(5), 307–311 (2010).
[Crossref]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon. 4(9), 611–622 (2010).
[Crossref]

2009 (5)

2008 (4)

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2004 (3)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10(1), 129–136 (2004).
[Crossref]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

2002 (2)

1993 (1)

1992 (1)

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photon. 6(2), 84–92 (2012).
[Crossref]

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

Anderson, D.

Ankiewicz, A.

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

Bao, Q.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon. 4(9), 611–622 (2010).
[Crossref]

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Cai, Z.-R.

Cao, W.-J.

Chang, W.

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Chen, H.

H. Chen, S. Chen, Z. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

Chen, S.

H. Chen, S. Chen, Z. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

Chen, T.

W. Ye, J. Wang, T. Chen, and Y. H. Shen, “Multi-wavelength mode-locked Er/Yb Co-doped fiber laser with square nano-second pulse output,” Laser Phys. 21(10), 1784–1788 (2011).
[Crossref]

Cheng, X.

Chong, A.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Desaix, M.

Duan, L.

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon. 4(9), 611–622 (2010).
[Crossref]

Gomes, L. A.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10(1), 129–136 (2004).
[Crossref]

Gong, Y.

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photon. 6(2), 84–92 (2012).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

Guo, C.-Y.

J.-H. Yang, C.-Y. Guo, S.-C. Ruan, D.-Q. Ouyang, H.-Q. Lin, Y.-M. Wu, and R.-H. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon. 4(9), 611–622 (2010).
[Crossref]

Haus, H. A.

Hou, J.

H. Chen, S. Chen, Z. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

Huang, S.

Ilday, F.

Ilday, F. O.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photon. 4(5), 307–311 (2010).
[Crossref]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Ilday, F. Ö.

Ippen, E. P.

Jablonski, M.

Jiang, Z.

H. Chen, S. Chen, Z. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

Jouhti, T.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10(1), 129–136 (2004).
[Crossref]

Kieu, K.

Knize, R. J.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).

Li, H.

Liao, J.-H.

Lim, H.

Lin, C.

Lin, H.-Q.

J.-H. Yang, C.-Y. Guo, S.-C. Ruan, D.-Q. Ouyang, H.-Q. Lin, Y.-M. Wu, and R.-H. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Lin, R.

Lin, Z.-B.

Lisak, M.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, L.

Liu, X.

Loh, K.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).

Loh, K. P.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).

Luo, A.-P.

Luo, Z.-C.

Mao, D.

Nelson, L. E.

Ning, Q.-Y.

Okhotnikov, O. G.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10(1), 129–136 (2004).
[Crossref]

Oktem, B.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photon. 4(5), 307–311 (2010).
[Crossref]

Orsila, L.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10(1), 129–136 (2004).
[Crossref]

Ouyang, D.-Q.

J.-H. Yang, C.-Y. Guo, S.-C. Ruan, D.-Q. Ouyang, H.-Q. Lin, Y.-M. Wu, and R.-H. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Quiroga-Teixeiro, M. L.

Renninger, W. H.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Ruan, S.-C.

J.-H. Yang, C.-Y. Guo, S.-C. Ruan, D.-Q. Ouyang, H.-Q. Lin, Y.-M. Wu, and R.-H. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Set, S. Y.

Shen, Y. H.

W. Ye, J. Wang, T. Chen, and Y. H. Shen, “Multi-wavelength mode-locked Er/Yb Co-doped fiber laser with square nano-second pulse output,” Laser Phys. 21(10), 1784–1788 (2011).
[Crossref]

Shum, P. P.

Sosnowski, T.

Soto-Crespo, J.

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Soto-Crespo, J. M.

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon. 4(9), 611–622 (2010).
[Crossref]

Tamura, K.

Tanaka, Y.

Tang, D.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).

Tang, D. Y.

Tang, M.

Tian, X.

Ulgudur, C.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photon. 4(5), 307–311 (2010).
[Crossref]

Wang, G.

Wang, J.

W. Ye, J. Wang, T. Chen, and Y. H. Shen, “Multi-wavelength mode-locked Er/Yb Co-doped fiber laser with square nano-second pulse output,” Laser Phys. 21(10), 1784–1788 (2011).
[Crossref]

Wang, L.

Wang, S.-K.

Wang, Y.

Wen, R.-H.

J.-H. Yang, C.-Y. Guo, S.-C. Ruan, D.-Q. Ouyang, H.-Q. Lin, Y.-M. Wu, and R.-H. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Wise, F.

Wise, F. W.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

F. Ö. Ilday, F. W. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27(17), 1531–1533 (2002).
[Crossref] [PubMed]

Wu, X.

Wu, Y.-M.

J.-H. Yang, C.-Y. Guo, S.-C. Ruan, D.-Q. Ouyang, H.-Q. Lin, Y.-M. Wu, and R.-H. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Xu, S.-H.

Xu, W.-C.

Yaguchi, H.

Yan, P.

Yang, J.-H.

J.-H. Yang, C.-Y. Guo, S.-C. Ruan, D.-Q. Ouyang, H.-Q. Lin, Y.-M. Wu, and R.-H. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Yang, Z.-M.

Ye, W.

W. Ye, J. Wang, T. Chen, and Y. H. Shen, “Multi-wavelength mode-locked Er/Yb Co-doped fiber laser with square nano-second pulse output,” Laser Phys. 21(10), 1784–1788 (2011).
[Crossref]

Yin, K.

H. Chen, S. Chen, Z. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

Yu, W.

Zhang, H.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[Crossref] [PubMed]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, J.

Zhao, L.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).

Zhao, L. M.

Appl. Phys. Lett. (2)

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, “Picosecond SESAM-based ytterbium mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 10(1), 129–136 (2004).
[Crossref]

IEEE Photon. J. (1)

J.-H. Yang, C.-Y. Guo, S.-C. Ruan, D.-Q. Ouyang, H.-Q. Lin, Y.-M. Wu, and R.-H. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Chen, S. Chen, Z. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

W. Ye, J. Wang, T. Chen, and Y. H. Shen, “Multi-wavelength mode-locked Er/Yb Co-doped fiber laser with square nano-second pulse output,” Laser Phys. 21(10), 1784–1788 (2011).
[Crossref]

Nat. Photon. (3)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photon. 6(2), 84–92 (2012).
[Crossref]

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photon. 4(5), 307–311 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon. 4(9), 611–622 (2010).
[Crossref]

Opt. Express (7)

S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
[Crossref] [PubMed]

H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002).
[Crossref] [PubMed]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[Crossref] [PubMed]

L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
[Crossref] [PubMed]

L. Liu, J.-H. Liao, Q.-Y. Ning, W. Yu, A.-P. Luo, S.-H. Xu, Z.-C. Luo, Z.-M. Yang, and W.-C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
[Crossref] [PubMed]

X. Tian, M. Tang, X. Cheng, P. P. Shum, Y. Gong, and C. Lin, “High-energy wave-breaking-free pulse from all-fiber mode-locked laser system,” Opt. Express 17(9), 7222–7227 (2009).
[Crossref] [PubMed]

S.-K. Wang, Q.-Y. Ning, A.-P. Luo, Z.-B. Lin, Z.-C. Luo, and W.-C. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21(2), 2402–2407 (2013).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Lett. A (1)

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

Phys. Rev. A (4)

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Phys. Rev. Lett. (1)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Other (1)

Z. Cheng, W. Sida, S. Hongxing, J. Xu, Q.-H. Yang, and P. Wang, “Dissipative soliton resonance in an all-normal-dispersion graphene oxide mode-locked Yb-doped fiber laser,” in CLEO: Science and Innovations (Optical Society of America, 2013), paper CM1I.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the actively mode-locked Yb-doped fiber laser. WDM: 980/1060 nm wavelength-division multiplexer. YDF: Yb-doped fiber. PC: polarization controller. MZIM: Mach Zehnder intensity modulator. OSA: optical spectrum analyzer.
Fig. 2
Fig. 2 (a) The single waveform of the mode-locking pulse observed in the Oscilloscope; (b) Oscilloscope trace the mode-locking pulse train; (c) RF spectrum of the output pulses with a span of 80 kHz and 100 MHz (inset figure); (d) Optical spectrum of the output pulse.
Fig. 3
Fig. 3 The wave-breaking state observed in (a) the Oscilloscope and (b) the RF spectrum analyzer.
Fig. 4
Fig. 4 Evolution of the output pulse shape (a) 1-10 ns, (b) 10-100 ns, and (c) optical spectrum under modulation of different pulse widths.
Fig. 5
Fig. 5 (a) Output pulse width and pulse energy versus the modulation width at the fixed pump power of 250 mW; (b) Output pulse energy versus the pump power level at the modulation width of 10 ns, 20 ns, 50ns and 100 ns, respectively.
Fig. 6
Fig. 6 The RF spectrum of pulse trains with modulation width of 20 ns (a) and 100 ns (b) under the pump power of 250 mW; (c) The evolution of the upper-limit of the modulation width and the output width with respect to increasing pump power level.
Fig. 7
Fig. 7 Evolution of the pulse shape with different detuning frequency. (a) Positive detuning; (b) Negative detuning.

Metrics