Abstract

Scanning near-field optical microscopy was applied to study, with sub-wavelength spatial resolution, the near- and the far-field distributions of propagating modes from a high-power laser diode. Simple modeling was also performed and compared with experimental results. The simulated distributions were consistent with the experiment and permitted clarification of the configuration of the transverse modes of the laser.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near- and far-field characterization of diode lasers

Shimon Peled
Appl. Opt. 19(2) 324-328 (1980)

Simulation of spectral stabilization of high-power broad-area edge emitting semiconductor lasers

Carlo Holly, Stefan Hengesbach, Martin Traub, and Dieter Hoffmann
Opt. Express 21(13) 15553-15567 (2013)

Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55??m by use of heterodyne scanning near-field optical microscopy

P. Tortora, M. Abashin, I. Märki, W. Nakagawa, L. Vaccaro, M. Salt, H. P. Herzig, U. Levy, and Y. Fainman
Opt. Lett. 30(21) 2885-2887 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Conolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
    [Crossref]
  2. J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, “8.8 W CW power from broad-waveguide AI-free active-region (λ = 805nm) diode lasers,” Electron. Lett. 34(11), 1100 (1998).
    [Crossref]
  3. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
    [Crossref]
  4. P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
    [Crossref]
  5. I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
    [Crossref]
  6. I. B. Petrescu-Prahova, M. Buda, and T. G. van de Roer, “Design of a 1W, single filament laser diode,” IEICE Trans. Electron. E77-C, 1472–1479 (1994).
  7. S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
    [Crossref]
  8. S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
    [Crossref]
  9. P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett. 96(13), 131110 (2010).
    [Crossref]
  10. V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, “Difference mode generation in injection lasers,” Semiconductors 35(10), 1203–1207 (2001).
    [Crossref]
  11. B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
    [Crossref]
  12. D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
    [Crossref]
  13. S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
    [Crossref]
  14. S. A. Akhmanov and S. Yu. Nikitin, Physical Optics (Oxford, 1997).
  15. H. C. Casey, Jr. and M. B. Panish, Heterostructure Lasers. Part A. Fundamental Principles (New York, 1978).
  16. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
    [Crossref]
  17. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
    [Crossref]
  18. D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
    [Crossref]
  19. P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
    [Crossref]
  20. http://www.ntmdt.com/device/ntegra-spectra .
  21. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (New York, 1964).
  22. A. V. Ankudinov, V. P. Evtikhiev, E. Yu. Kotelnikov, A. N. Titkov, and R. Laiho, “Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy,” J. Appl. Phys. 93(1), 432–437 (2003).
    [Crossref]
  23. A. V. Ankudinov, V. P. Evtikhiev, K. S. Ladutenko, M. G. Rastegaeva, A. N. Titkov, and R. Laiho, “Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/GaAs laser diode,” J. Appl. Phys. 101(2), 024504 (2007).
    [Crossref]

2010 (1)

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett. 96(13), 131110 (2010).
[Crossref]

2009 (3)

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

2008 (2)

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
[Crossref]

2007 (1)

A. V. Ankudinov, V. P. Evtikhiev, K. S. Ladutenko, M. G. Rastegaeva, A. N. Titkov, and R. Laiho, “Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/GaAs laser diode,” J. Appl. Phys. 101(2), 024504 (2007).
[Crossref]

2006 (1)

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

2004 (2)

N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
[Crossref]

S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
[Crossref]

2003 (2)

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

A. V. Ankudinov, V. P. Evtikhiev, E. Yu. Kotelnikov, A. N. Titkov, and R. Laiho, “Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy,” J. Appl. Phys. 93(1), 432–437 (2003).
[Crossref]

2001 (1)

V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, “Difference mode generation in injection lasers,” Semiconductors 35(10), 1203–1207 (2001).
[Crossref]

2000 (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

1999 (1)

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

1998 (2)

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Conolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[Crossref]

J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, “8.8 W CW power from broad-waveguide AI-free active-region (λ = 805nm) diode lasers,” Electron. Lett. 34(11), 1100 (1998).
[Crossref]

1996 (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

1994 (1)

I. B. Petrescu-Prahova, M. Buda, and T. G. van de Roer, “Design of a 1W, single filament laser diode,” IEICE Trans. Electron. E77-C, 1472–1479 (1994).

Abare, A. C.

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

Afonenko, A. A.

V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, “Difference mode generation in injection lasers,” Semiconductors 35(10), 1203–1207 (2001).
[Crossref]

Aleshkin, V. Ya.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, “Difference mode generation in injection lasers,” Semiconductors 35(10), 1203–1207 (2001).
[Crossref]

Alferov, Zh. I.

S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
[Crossref]

N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
[Crossref]

Al-Muhanna, A.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Conolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[Crossref]

Ankudinov, A. V.

A. V. Ankudinov, V. P. Evtikhiev, K. S. Ladutenko, M. G. Rastegaeva, A. N. Titkov, and R. Laiho, “Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/GaAs laser diode,” J. Appl. Phys. 101(2), 024504 (2007).
[Crossref]

A. V. Ankudinov, V. P. Evtikhiev, E. Yu. Kotelnikov, A. N. Titkov, and R. Laiho, “Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy,” J. Appl. Phys. 93(1), 432–437 (2003).
[Crossref]

Awschalom, D. D.

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

Bahriz, M.

P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
[Crossref]

Bambrick, D.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Belyanin, A. A.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Biryukov, A. A.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Blume, G.

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Bondarev, A. D.

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

Botez, D.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Conolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[Crossref]

J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, “8.8 W CW power from broad-waveguide AI-free active-region (λ = 805nm) diode lasers,” Electron. Lett. 34(11), 1100 (1998).
[Crossref]

Buda, M.

I. B. Petrescu-Prahova, M. Buda, and T. G. van de Roer, “Design of a 1W, single filament laser diode,” IEICE Trans. Electron. E77-C, 1472–1479 (1994).

Bugge, F.

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett. 96(13), 131110 (2010).
[Crossref]

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Bulaev, P. V.

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Coldren, L. A.

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

Colombelli, R.

P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
[Crossref]

Conolly, J. C.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Conolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[Crossref]

Crump, P.

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett. 96(13), 131110 (2010).
[Crossref]

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

De Wilde, Y.

P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
[Crossref]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Denbaars, S. P.

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

Dubinov, A. A.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Einfeldt, S.

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Erbert, G.

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett. 96(13), 131110 (2010).
[Crossref]

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Ershov, A. V.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Evtikhiev, V. P.

A. V. Ankudinov, V. P. Evtikhiev, K. S. Ladutenko, M. G. Rastegaeva, A. N. Titkov, and R. Laiho, “Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/GaAs laser diode,” J. Appl. Phys. 101(2), 024504 (2007).
[Crossref]

A. V. Ankudinov, V. P. Evtikhiev, E. Yu. Kotelnikov, A. N. Titkov, and R. Laiho, “Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy,” J. Appl. Phys. 93(1), 432–437 (2003).
[Crossref]

Fetisova, N. V.

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Garbuzov, D. Z.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Conolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[Crossref]

Gavrilenko, V. I.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Ginolas, A.

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Goutain, E.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Hansen, M.

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

Häusler, K.

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Hu, E. L.

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

Kapitonov, V. A.

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

Khomylev, M. A.

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Kocharovsky, V. V.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Kotelnikov, E. Yu.

A. V. Ankudinov, V. P. Evtikhiev, E. Yu. Kotelnikov, A. N. Titkov, and R. Laiho, “Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy,” J. Appl. Phys. 93(1), 432–437 (2003).
[Crossref]

Krysa, A. B.

P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
[Crossref]

Ladutenko, K. S.

A. V. Ankudinov, V. P. Evtikhiev, K. S. Ladutenko, M. G. Rastegaeva, A. N. Titkov, and R. Laiho, “Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/GaAs laser diode,” J. Appl. Phys. 101(2), 024504 (2007).
[Crossref]

Laiho, R.

A. V. Ankudinov, V. P. Evtikhiev, K. S. Ladutenko, M. G. Rastegaeva, A. N. Titkov, and R. Laiho, “Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/GaAs laser diode,” J. Appl. Phys. 101(2), 024504 (2007).
[Crossref]

A. V. Ankudinov, V. P. Evtikhiev, E. Yu. Kotelnikov, A. N. Titkov, and R. Laiho, “Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy,” J. Appl. Phys. 93(1), 432–437 (2003).
[Crossref]

Lemoine, P.-A.

P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
[Crossref]

Leshko, A. Y.

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

Lyutetskii, A. V.

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

Mack, M. P.

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

Maremyanin, K. V.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Marmalyuk, A. A.

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Marsh, J. H.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Martinelli, R. U.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Conolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[Crossref]

Mawst, L. J.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Conolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[Crossref]

J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, “8.8 W CW power from broad-waveguide AI-free active-region (λ = 805nm) diode lasers,” Electron. Lett. 34(11), 1100 (1998).
[Crossref]

McDougall, S. D.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Modak, P.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Moreau, V.

P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
[Crossref]

Moritz, T.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Morozov, S. V.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Morris, J. A.

J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, “8.8 W CW power from broad-waveguide AI-free active-region (λ = 805nm) diode lasers,” Electron. Lett. 34(11), 1100 (1998).
[Crossref]

Nekorkin, S. M.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Nikitin, D. B.

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Nikolaev, D. N.

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

Padalitsa, A. A.

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Paschke, K.

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Petrescu-Prahova, I. B.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

I. B. Petrescu-Prahova, M. Buda, and T. G. van de Roer, “Design of a 1W, single filament laser diode,” IEICE Trans. Electron. E77-C, 1472–1479 (1994).

Pietrzak, A.

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett. 96(13), 131110 (2010).
[Crossref]

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Pikhtin, N. A.

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
[Crossref]

S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
[Crossref]

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Qiu, B.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Rastegaeva, M. G.

A. V. Ankudinov, V. P. Evtikhiev, K. S. Ladutenko, M. G. Rastegaeva, A. N. Titkov, and R. Laiho, “Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/GaAs laser diode,” J. Appl. Phys. 101(2), 024504 (2007).
[Crossref]

Ressel, P.

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Riordan, J.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Rudova, N. A.

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

Shamakhov, V. V.

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Silan, D.

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Slipchenko, S. O.

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
[Crossref]

S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
[Crossref]

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Sokolova, Z. N.

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
[Crossref]

N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
[Crossref]

Stankevich, A. L.

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
[Crossref]

S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
[Crossref]

Staske, R.

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Tarasov, I. S.

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
[Crossref]

S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
[Crossref]

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Titkov, A. N.

A. V. Ankudinov, V. P. Evtikhiev, K. S. Ladutenko, M. G. Rastegaeva, A. N. Titkov, and R. Laiho, “Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/GaAs laser diode,” J. Appl. Phys. 101(2), 024504 (2007).
[Crossref]

A. V. Ankudinov, V. P. Evtikhiev, E. Yu. Kotelnikov, A. N. Titkov, and R. Laiho, “Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy,” J. Appl. Phys. 93(1), 432–437 (2003).
[Crossref]

Tränkle, G.

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett. 96(13), 131110 (2010).
[Crossref]

van de Roer, T. G.

I. B. Petrescu-Prahova, M. Buda, and T. G. van de Roer, “Design of a 1W, single filament laser diode,” IEICE Trans. Electron. E77-C, 1472–1479 (1994).

Vinokurov, D. A.

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
[Crossref]

N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
[Crossref]

Wade, J. K.

J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, “8.8 W CW power from broad-waveguide AI-free active-region (λ = 805nm) diode lasers,” Electron. Lett. 34(11), 1100 (1998).
[Crossref]

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Wenzel, H.

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett. 96(13), 131110 (2010).
[Crossref]

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Wilson, L. R.

P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
[Crossref]

Young, D. K.

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

Zalevskii, I. D.

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Zeimer, U.

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Zvonkov, B. N.

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

Zvonkov, N. B.

V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, “Difference mode generation in injection lasers,” Semiconductors 35(10), 1203–1207 (2001).
[Crossref]

Appl. Phys. Lett. (4)

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Conolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[Crossref]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, “975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers,” Appl. Phys. Lett. 96(13), 131110 (2010).
[Crossref]

B. N. Zvonkov, A. A. Biryukov, A. V. Ershov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Maremyanin, S. V. Morozov, A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, “Room-temperature intracavity difference-frequency generation in butt-joint diode lasers,” Appl. Phys. Lett. 92(2), 021122 (2008).
[Crossref]

D. K. Young, M. P. Mack, A. C. Abare, M. Hansen, L. A. Coldren, S. P. Denbaars, E. L. Hu, and D. D. Awschalom, “Near-field scanning optical microscopy of indium gallium nitride multiple-quantum-well laser diodes,” Appl. Phys. Lett. 74(16), 2349–2351 (1999).
[Crossref]

Electron. Lett. (2)

J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, “8.8 W CW power from broad-waveguide AI-free active-region (λ = 805nm) diode lasers,” Electron. Lett. 34(11), 1100 (1998).
[Crossref]

N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, “16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004).
[Crossref]

IEICE Trans. Electron. (1)

I. B. Petrescu-Prahova, M. Buda, and T. G. van de Roer, “Design of a 1W, single filament laser diode,” IEICE Trans. Electron. E77-C, 1472–1479 (1994).

J. Appl. Phys. (2)

A. V. Ankudinov, V. P. Evtikhiev, E. Yu. Kotelnikov, A. N. Titkov, and R. Laiho, “Voltage distributions and nonoptical catastrophic mirror degradation in high power InGaAs/AlGaAs/GaAs lasers studied by Kelvin probe force microscopy,” J. Appl. Phys. 93(1), 432–437 (2003).
[Crossref]

A. V. Ankudinov, V. P. Evtikhiev, K. S. Ladutenko, M. G. Rastegaeva, A. N. Titkov, and R. Laiho, “Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/GaAs laser diode,” J. Appl. Phys. 101(2), 024504 (2007).
[Crossref]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Mater. Sci. Eng. B (1)

P.-A. Lemoine, V. Moreau, M. Bahriz, Y. De Wilde, R. Colombelli, L. R. Wilson, and A. B. Krysa, “Intracavity near-field optical imaging of a mid-infrared quantum cascade laser mode,” Mater. Sci. Eng. B 149(3), 270–274 (2008).
[Crossref]

Proc. SPIE (2)

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, “20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 µm,” Proc. SPIE 7198, 719814 (2009).
[Crossref]

I. B. Petrescu-Prahova, P. Modak, E. Goutain, D. Silan, D. Bambrick, J. Riordan, T. Moritz, S. D. McDougall, B. Qiu, and J. H. Marsh, “High d/gamma values in diode laser structures for very high power,” Proc. SPIE 7198, 71981I (2009).
[Crossref]

Rep. Prog. Phys. (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Semiconductors (4)

S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, “Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures,” Semiconductors 38(12), 1430–1439 (2004).
[Crossref]

V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, “Difference mode generation in injection lasers,” Semiconductors 35(10), 1203–1207 (2001).
[Crossref]

D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Y. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, “High-power lasers (λ= 940–980 nm) based on asymmetric GaInAs/GaInAsP/AlGaAs separate-confinement heterostructure,” Semiconductors 40(6), 745–748 (2006).
[Crossref]

S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, “Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures,” Semiconductors 43(1), 112–116 (2009).
[Crossref]

Tech. Phys. Lett. (1)

S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, “Laser diodes (λ=0.98 μm) with a narrow radiation pattern and low internal optical losses,” Tech. Phys. Lett. 29(12), 980–983 (2003).
[Crossref]

Other (4)

S. A. Akhmanov and S. Yu. Nikitin, Physical Optics (Oxford, 1997).

H. C. Casey, Jr. and M. B. Panish, Heterostructure Lasers. Part A. Fundamental Principles (New York, 1978).

http://www.ntmdt.com/device/ntegra-spectra .

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (New York, 1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Characteristics and the design of the laser diode. An experimental far-field laser radiation pattern (red solid line) and modeled divergence (blue dashed line) calculated for a linear combination of the 2nd the 1st TE modes with the amplitude ratio of the electric fields 0.267 and the phase difference of 16°, (a). Electric field profiles of three TE modes corresponding to the possible solutions of the wave equation for the laser heterostructure, (b). Energy band schematics for the laser heterostructure, (c). Scanning electron microscopy image of the laser facet identifies main layers of the heterostructure, (d). The far-field laser radiation pattern was measured in the pulsed operation regime with parameters: pulse duration 5 μs, repetition frequency 1 kHz, current amplitude 2 A (threshold current 0.35 А), optical power per emitting facet 0.6 W.
Fig. 2
Fig. 2 Experimental schemes to study laser radiation distributions in confocal (a) and SNOM (b) measurement regimes. To activate the laser, a pulsed power supply was used: current pulse duration 5 μs, repetition frequency 1 kHz, current pulse amplitude 2 A. In the Cartesian coordinates of the triple of vectors X, Y and Z is selected according to the generally accepted description for semiconductor lasers [15]: X vector points along the normal to the plane of the heterostructure layers; Y vector is in the plane of the heterostructure layers; Z vector is normal to the emitting facet.
Fig. 3
Fig. 3 A lasing spectrum of the high-power laser diode, as measured on the emitting facet by scanning confocal optical microscopy.
Fig. 4
Fig. 4 Scanning confocal optical microscopy of the radiation distribution near the emitting facet of the operating laser diode. 2nd TE mode XZ image calculated by expression (1) (a). XZ signal distribution of the laser radiation (integrated intensity of spectrum in the 1074-1075 nm range), measured by the lenses NA=0.9 , (b), NA=0.7 , (c), and NA=0.5 , (d). Dotted lines in the images indicate the emitting facet position (laser layers are below the line). All images have the same scale and were taken from nearly the same sample area.
Fig. 5
Fig. 5 SNOM study of the radiation distribution at the emitting facet of the active laser diode. A contact AFM image of the surface topography on emitting facet, (a). A SNOM XY image of the light distribution, (b). A typical X-profile of SNOM signal (red dotted line) and a model profile (blue solid line) for the near field expected for the 2nd TE mode, (с), see also Fig. 1(b).
Fig. 6
Fig. 6 SNOM study of the radiation distribution near the emitting facet of the active laser diode. A model XZ image, (a). A SNOM XZ image (integrated intensity of spectrum signal in the 1068-1079 nm range), (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I( r,t )= ( A L sin( ωtk| r r L | ) | r r L | + A C sin( ωtk| r r C | ) | r r C | + A R sin( ωtk| r r R | ) | r r R | ) 2
S( r )= I( r,t ) = A L 2 2| r r L | + A C 2 2| r r C | + A R 2 2| r r R | + A L A C cos[ k( | r r L || r r C | ) ] | r r L |×| r r C | + A L A R cos[ k( | r r L || r r R | ) ] | r r L |×| r r R | + A C A R cos[ k( | r r C || r r R | ) ] | r r C |×| r r R |
A L =1+δ× e iφ ; A C =1; A R =1δ× e iφ

Metrics