Abstract

Flexible interference lithography using fibers as laser beam splitting and delivering system is demonstrated. A laser beam at 325 nm is used as the ultraviolet light source. Fiber bundles consisting of two, three, or four optical fibers have been utilized for the fabrication of two-dimensional photonic structures with different lattice configurations and different periods. The effective area of the fabricated waveguide grating structures is in the scale of centimeters in diameter with excellent homogeneity, which has much space for further improvement. This flexible interference lithography technique enables simple, compact, and efficient fabrication of photonic structures.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization control in flexible interference lithography for nano-patterning of different photonic structures with optimized contrast

Jianfang He, Xiaohui Fang, Yuanhai Lin, and Xinping Zhang
Opt. Express 23(9) 11518-11525 (2015)

Wafer-scale nanopatterning using fast-reconfigurable and actively-stabilized two-beam fiber-optic interference lithography

Chuwei Liang, Tuo Qu, Jingxuan Cai, Zhouyang Zhu, Shijie Li, and Wen-Di Li
Opt. Express 26(7) 8194-8200 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yang, Q. Li, and G. P. Wang, “Design and fabrication of diverse metamaterial structures by holographic lithography,” Opt. Express 16(15), 11275–11280 (2008).
    [Crossref] [PubMed]
  2. D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
    [Crossref]
  3. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51(18), 4028–4041 (2012).
    [Crossref] [PubMed]
  4. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
    [Crossref]
  5. X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28(6), 453–455 (2003).
    [Crossref] [PubMed]
  6. N. D. Kundikova, Y. V. Miklyaev, and D. G. Pikhulya, “Rhombohedral photonic crystals by triple-exposure interference lithography: Complete photonic band gap,” Opt. Commun. 285(6), 1238–1241 (2012).
    [Crossref]
  7. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
    [Crossref] [PubMed]
  8. Y.-C. Chen, J. B. Geddes, L. Yin, P. Wiltzius, and P. V. Braun, “X-Ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater. 24(21), 2863–2868 (2012).
    [Crossref] [PubMed]
  9. S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, “Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition,” Adv. Mater. 23(24), 2749–2752 (2011).
    [Crossref] [PubMed]
  10. R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
    [Crossref]
  11. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
    [Crossref] [PubMed]
  12. X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
    [Crossref]
  13. A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
    [Crossref] [PubMed]
  14. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [Crossref] [PubMed]
  15. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-Dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
    [Crossref]
  16. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  17. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [Crossref]
  18. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infared radiation,” J. Opt. Soc. Am. A 14(11), 2985–2993 (1997).
    [Crossref]
  19. D. Lacour, P. Plumey, G. Granet, and A. M. Ravaud, “Resonant waveguide grating: Analysis of polarization independent filtering,” Opt. Quantum Electron. 33(4/5), 451–470 (2001).
    [Crossref]
  20. X. P. Zhang, B. Q. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
    [Crossref] [PubMed]

2012 (3)

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51(18), 4028–4041 (2012).
[Crossref] [PubMed]

Y.-C. Chen, J. B. Geddes, L. Yin, P. Wiltzius, and P. V. Braun, “X-Ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater. 24(21), 2863–2868 (2012).
[Crossref] [PubMed]

N. D. Kundikova, Y. V. Miklyaev, and D. G. Pikhulya, “Rhombohedral photonic crystals by triple-exposure interference lithography: Complete photonic band gap,” Opt. Commun. 285(6), 1238–1241 (2012).
[Crossref]

2011 (4)

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, “Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition,” Adv. Mater. 23(24), 2749–2752 (2011).
[Crossref] [PubMed]

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[Crossref]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

2006 (3)

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

2005 (1)

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-Dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[Crossref]

2004 (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (1)

D. Lacour, P. Plumey, G. Granet, and A. M. Ravaud, “Resonant waveguide grating: Analysis of polarization independent filtering,” Opt. Quantum Electron. 33(4/5), 451–470 (2001).
[Crossref]

1997 (2)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infared radiation,” J. Opt. Soc. Am. A 14(11), 2985–2993 (1997).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bharaj, H.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[Crossref]

Blanford, C. F.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[Crossref]

Braun, P. V.

Y.-C. Chen, J. B. Geddes, L. Yin, P. Wiltzius, and P. V. Braun, “X-Ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater. 24(21), 2863–2868 (2012).
[Crossref] [PubMed]

S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, “Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition,” Adv. Mater. 23(24), 2749–2752 (2011).
[Crossref] [PubMed]

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Brueck, S. R. J.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Burrow, G. M.

Busch, K.

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Cai, L. Z.

Chen, Y.-C.

Y.-C. Chen, J. B. Geddes, L. Yin, P. Wiltzius, and P. V. Braun, “X-Ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater. 24(21), 2863–2868 (2012).
[Crossref] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Denning, R. G.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[Crossref]

Deubel, M.

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Diem, M.

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

Friend, R. H.

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Friesem, A. A.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infared radiation,” J. Opt. Soc. Am. A 14(11), 2985–2993 (1997).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Gaylord, T. K.

Geddes, J. B.

Y.-C. Chen, J. B. Geddes, L. Yin, P. Wiltzius, and P. V. Braun, “X-Ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater. 24(21), 2863–2868 (2012).
[Crossref] [PubMed]

Gerthsen, D.

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

Giessen, H.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Gissibl, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Gorishnyy, T.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Granet, G.

D. Lacour, P. Plumey, G. Granet, and A. M. Ravaud, “Resonant waveguide grating: Analysis of polarization independent filtering,” Opt. Quantum Electron. 33(4/5), 451–470 (2001).
[Crossref]

Guo, H.

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Jang, J.-H.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Juodkazis, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-Dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[Crossref]

Klotzbücher, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Koh, C.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Kooi, S.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Ku, Z.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Kundikova, N. D.

N. D. Kundikova, Y. V. Miklyaev, and D. G. Pikhulya, “Rhombohedral photonic crystals by triple-exposure interference lithography: Complete photonic band gap,” Opt. Commun. 285(6), 1238–1241 (2012).
[Crossref]

Lacour, D.

D. Lacour, P. Plumey, G. Granet, and A. M. Ravaud, “Resonant waveguide grating: Analysis of polarization independent filtering,” Opt. Quantum Electron. 33(4/5), 451–470 (2001).
[Crossref]

Lee, S. C.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Leibovici, M. C. R.

Li, Q.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

Liu, Q.

Maldovan, M.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Matsuo, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-Dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[Crossref]

Meisel, D. C.

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

Miklyaev, Y. V.

N. D. Kundikova, Y. V. Miklyaev, and D. G. Pikhulya, “Rhombohedral photonic crystals by triple-exposure interference lithography: Complete photonic band gap,” Opt. Commun. 285(6), 1238–1241 (2012).
[Crossref]

Misawa, H.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-Dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[Crossref]

Miyake, M.

S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, “Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition,” Adv. Mater. 23(24), 2749–2752 (2011).
[Crossref] [PubMed]

Mizeikis, V.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-Dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[Crossref]

Nau, D.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Park, S.-G.

S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, “Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition,” Adv. Mater. 23(24), 2749–2752 (2011).
[Crossref] [PubMed]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Pérez-Willard, F.

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

Pikhulya, D. G.

N. D. Kundikova, Y. V. Miklyaev, and D. G. Pikhulya, “Rhombohedral photonic crystals by triple-exposure interference lithography: Complete photonic band gap,” Opt. Commun. 285(6), 1238–1241 (2012).
[Crossref]

Plumey, P.

D. Lacour, P. Plumey, G. Granet, and A. M. Ravaud, “Resonant waveguide grating: Analysis of polarization independent filtering,” Opt. Quantum Electron. 33(4/5), 451–470 (2001).
[Crossref]

Radke, A.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Ravaud, A. M.

D. Lacour, P. Plumey, G. Granet, and A. M. Ravaud, “Resonant waveguide grating: Analysis of polarization independent filtering,” Opt. Quantum Electron. 33(4/5), 451–470 (2001).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infared radiation,” J. Opt. Soc. Am. A 14(11), 2985–2993 (1997).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-Dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[Crossref]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infared radiation,” J. Opt. Soc. Am. A 14(11), 2985–2993 (1997).
[Crossref]

Sharp, D. N.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[Crossref]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Sun, B.

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Sun, B. Q.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Tetreault, N.

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Thomas, E. L.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Turberfield, A. J.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[Crossref]

Ullal, C. K.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Urban, H.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Wang, G. P.

Wang, Y. R.

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Wiltzius, P.

Y.-C. Chen, J. B. Geddes, L. Yin, P. Wiltzius, and P. V. Braun, “X-Ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater. 24(21), 2863–2868 (2012).
[Crossref] [PubMed]

Xia, D.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Yang, S.-M.

S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, “Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition,” Adv. Mater. 23(24), 2749–2752 (2011).
[Crossref] [PubMed]

Yang, X. L.

Yang, Y.

Yin, L.

Y.-C. Chen, J. B. Geddes, L. Yin, P. Wiltzius, and P. V. Braun, “X-Ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater. 24(21), 2863–2868 (2012).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Zhang, X. P.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D Micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[Crossref]

Adv. Mater. (6)

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-Dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[Crossref]

D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18(22), 2964–2968 (2006).
[Crossref]

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Y.-C. Chen, J. B. Geddes, L. Yin, P. Wiltzius, and P. V. Braun, “X-Ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater. 24(21), 2863–2868 (2012).
[Crossref] [PubMed]

S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, “Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition,” Adv. Mater. 23(24), 2749–2752 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

N. D. Kundikova, Y. V. Miklyaev, and D. G. Pikhulya, “Rhombohedral photonic crystals by triple-exposure interference lithography: Complete photonic band gap,” Opt. Commun. 285(6), 1238–1241 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

D. Lacour, P. Plumey, G. Granet, and A. M. Ravaud, “Resonant waveguide grating: Analysis of polarization independent filtering,” Opt. Quantum Electron. 33(4/5), 451–470 (2001).
[Crossref]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental setup for flexible interference lithography. (b) Fabricated grating structures with different periods.
Fig. 2
Fig. 2 AFM image of the photoresist grating with a period of Λ = 460 nm and a modulation depth of 146 nm.
Fig. 3
Fig. 3 Angle-resolved tuning properties of the waveguide resonance mode for (a) TM and (b) TE polarization with the incident angle (θ) changed from 0 to 24° in steps of 2°. Insets: the geometry for the spectroscopic measurements showing the polarization and incident directions of the light beam.
Fig. 4
Fig. 4 Fabrication of different photonic lattices using different interference lithography scheme based on fibers: (a) and (b): triangular lattices using three-fiber geometry; (c) and (d): square lattices using four-fiber geometry.

Metrics