Abstract

Optical damage experiments were carried out in a series of Holmium doped congruent lithium niobate (Ho:cLN) crystals as a function of dopant concentration and laser intensity. The light induced beam distortion was recorded with a camera and a detector under the pseudo-Z-scan configuration. At 532 nm, strong suppression of the optical damage was observed for the 0.94 mol. % doped crystal. Increased resistance to optical damage was also observed at 488 nm. The suppression of the optical damage is predominantly attributed to the reduction of the Nb antisites due to the holmium doping.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An excellent crystal for high resistance against optical damage in visible-UV range: near-stoichiometric zirconium-doped lithium niobate

Hongde Liu, Qirui Liang, Meiling Zhu, Wei Li, Shiguo Liu, Ling Zhang, Shaolin Chen, Yongfa Kong, and Jingjun Xu
Opt. Express 19(3) 1743-1748 (2011)

Electro-optic and dielectric properties of Zirconium-doped congruent lithium–niobate crystals

Mustapha Abarkan, Michel Aillerie, Ninel Kokanyan, Clément Teyssandier, and Edvard Kokanyan
Opt. Mater. Express 4(1) 179-189 (2014)

Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals

Paolo Minzioni, Ilaria Cristiani, Jin Yu, Jacopo Parravicini, Edvard P. Kokanyan, and Vittorio Degiorgio
Opt. Express 15(21) 14171-14176 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003).
  2. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
    [Crossref]
  3. T. Volk and M. Wohlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer, 2008).
  4. A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
    [Crossref]
  5. G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
    [Crossref]
  6. L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
    [Crossref]
  7. M. O. Ramirez, D. Jaque, J. A. Sanz Garcia, L. E. Bausa, and J. E. Munoz Santiuste, “74% slope efficiency from a diode-pumped Yb3+:LiNbO3: MgO laser crystal,” Appl. Phys. B 77, 621–623 (2003).
    [Crossref]
  8. A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
    [Crossref]
  9. A. Lorenzo, L. E. Bausá, J. A. Sanz Garcia, and J. Garcia Solé, “Optical absorption intensities and fluorescence dynamics of Ho3+ in LiNbO3,” J. Phys. Condens. Matter 8(31), 5781–5791 (1996).
    [Crossref]
  10. A. Lorenzo, L. E. Bausa, and J. Garcia Sole, “Optical characterization of Ho3+ ions in LiNbO3 and in LiNbO3: MgO crystals,” J. Phys. Condens. Matter 6(5), 1065–1078 (1994).
    [Crossref]
  11. R. N. Balasanyan, V. T. Gabrielyan, E. P. Kokanyan, and I. Feldvari, “Composition and homogeneity of LiNbO3 crystals as related to growth-conditions. 1. The influence of electric-field,” Crystallography 35, 1540–1544 (1990).
  12. V. Bermudez, M. D. Serrano, J. Tornero, and E. Dieguez, “Er incorporation into congruent LiNbO3 crystals,” Solid State Chem. 112, 699–703 (1999).
  13. L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
    [Crossref]
  14. F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
    [Crossref]
  15. H. Qiao, Y. Tomita, J. Xu, Q. Wu, G. Zhang, and G. Zhang, “Observation of strong stimulated photorefractive scattering and self-pumped phase conjugation in LiNbO3:Mg in the ultraviolet,” Opt. Express 13(19), 7666–7671 (2005).
    [Crossref] [PubMed]
  16. S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
    [Crossref]
  17. O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
    [Crossref]
  18. K. Polgár, A. Peter, L. Kovacs, G. Corradi, and Zs. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
    [Crossref]
  19. M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
    [Crossref]
  20. J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3 doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
    [Crossref]
  21. J. K. Yamamoto, T. Yamazaki, and K. Yamagishi, “Noncritical phase matching and photorefractive damage in Sc2O3:LiNbO3,” Appl. Phys. Lett. 64(24), 3228–3230 (1994).
    [Crossref]
  22. X. H. Zhen, Q. Li, H. T. Li, Y. H. Xu, and L. C. Zhao, “Growth and optical damage resistance of Sc, Er co-doped LiNbO3 crystals,” Cryst. Res. Technol. 40(7), 649–653 (2005).
    [Crossref]
  23. S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
    [Crossref]
  24. Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In,” Appl. Phys. Lett. 66(3), 280–281 (1995).
    [Crossref]
  25. T. Volk, N. Rubinina, and M. Wohlecke, “Optical damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
    [Crossref]
  26. T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
    [Crossref]
  27. H. Donnerberg, “Comments on the defect chemistry of magnesium-doped lithium niobate (LiNbO3),” J. Solid State Chem. 123(2), 208–214 (1996).
    [Crossref]
  28. A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. Garcıa-Sole, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
    [Crossref]
  29. J. B. Gruber, D. K. Sardar, R. M. Yow, B. Zandi, and E. P. Kokanyan, “Modeling the crystal-field splitting of the energy levels of Er3+ in charge-compensated sites in lithium niobate,” Phys. Rev. B 69(19), 195103 (2004).
    [Crossref]
  30. T. Gog, M. Griebenow, and G. Materlik, “X-ray standing wave determination of the lattice location of Er diffused into LiNbO3,” Phys. Lett. A 181(5), 417–420 (1993).
    [Crossref]
  31. J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17(24), 22209–22216 (2009).
    [Crossref] [PubMed]
  32. J. Safioui, F. Devaux, K. P. Huy, and M. Chauvet, “High intensity behaviour of pyroelectric photorefractive self-focusing in LiNbO3,” Opt. Commun. 294, 294–298 (2013).
    [Crossref]
  33. S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
    [Crossref]
  34. J.-J. Liu, P. P. Banerjee, and Q. W. Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3,” J. Opt. Soc. Am. B 11(9), 1688–1693 (1994).
    [Crossref]
  35. A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
    [Crossref]

2013 (2)

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

J. Safioui, F. Devaux, K. P. Huy, and M. Chauvet, “High intensity behaviour of pyroelectric photorefractive self-focusing in LiNbO3,” Opt. Commun. 294, 294–298 (2013).
[Crossref]

2011 (2)

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
[Crossref]

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

2010 (2)

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

2009 (1)

2008 (1)

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

2006 (1)

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

2005 (3)

X. H. Zhen, Q. Li, H. T. Li, Y. H. Xu, and L. C. Zhao, “Growth and optical damage resistance of Sc, Er co-doped LiNbO3 crystals,” Cryst. Res. Technol. 40(7), 649–653 (2005).
[Crossref]

H. Qiao, Y. Tomita, J. Xu, Q. Wu, G. Zhang, and G. Zhang, “Observation of strong stimulated photorefractive scattering and self-pumped phase conjugation in LiNbO3:Mg in the ultraviolet,” Opt. Express 13(19), 7666–7671 (2005).
[Crossref] [PubMed]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

2004 (2)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

J. B. Gruber, D. K. Sardar, R. M. Yow, B. Zandi, and E. P. Kokanyan, “Modeling the crystal-field splitting of the energy levels of Er3+ in charge-compensated sites in lithium niobate,” Phys. Rev. B 69(19), 195103 (2004).
[Crossref]

2003 (1)

M. O. Ramirez, D. Jaque, J. A. Sanz Garcia, L. E. Bausa, and J. E. Munoz Santiuste, “74% slope efficiency from a diode-pumped Yb3+:LiNbO3: MgO laser crystal,” Appl. Phys. B 77, 621–623 (2003).
[Crossref]

2002 (1)

A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
[Crossref]

1999 (1)

V. Bermudez, M. D. Serrano, J. Tornero, and E. Dieguez, “Er incorporation into congruent LiNbO3 crystals,” Solid State Chem. 112, 699–703 (1999).

1997 (2)

L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
[Crossref]

K. Polgár, A. Peter, L. Kovacs, G. Corradi, and Zs. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

1996 (3)

A. Lorenzo, L. E. Bausá, J. A. Sanz Garcia, and J. Garcia Solé, “Optical absorption intensities and fluorescence dynamics of Ho3+ in LiNbO3,” J. Phys. Condens. Matter 8(31), 5781–5791 (1996).
[Crossref]

H. Donnerberg, “Comments on the defect chemistry of magnesium-doped lithium niobate (LiNbO3),” J. Solid State Chem. 123(2), 208–214 (1996).
[Crossref]

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

1995 (3)

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In,” Appl. Phys. Lett. 66(3), 280–281 (1995).
[Crossref]

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. Garcıa-Sole, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[Crossref]

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[Crossref]

1994 (4)

J.-J. Liu, P. P. Banerjee, and Q. W. Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3,” J. Opt. Soc. Am. B 11(9), 1688–1693 (1994).
[Crossref]

T. Volk, N. Rubinina, and M. Wohlecke, “Optical damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
[Crossref]

A. Lorenzo, L. E. Bausa, and J. Garcia Sole, “Optical characterization of Ho3+ ions in LiNbO3 and in LiNbO3: MgO crystals,” J. Phys. Condens. Matter 6(5), 1065–1078 (1994).
[Crossref]

J. K. Yamamoto, T. Yamazaki, and K. Yamagishi, “Noncritical phase matching and photorefractive damage in Sc2O3:LiNbO3,” Appl. Phys. Lett. 64(24), 3228–3230 (1994).
[Crossref]

1993 (1)

T. Gog, M. Griebenow, and G. Materlik, “X-ray standing wave determination of the lattice location of Er diffused into LiNbO3,” Phys. Lett. A 181(5), 417–420 (1993).
[Crossref]

1992 (1)

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3 doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

1990 (1)

R. N. Balasanyan, V. T. Gabrielyan, E. P. Kokanyan, and I. Feldvari, “Composition and homogeneity of LiNbO3 crystals as related to growth-conditions. 1. The influence of electric-field,” Crystallography 35, 1540–1544 (1990).

1966 (1)

A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Agullo-Lopez, F.

L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
[Crossref]

Aillerie, M.

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

Alonzo, M.

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Argiolas, N.

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

Ashkin, A.

A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Balasanyan, R. N.

R. N. Balasanyan, V. T. Gabrielyan, E. P. Kokanyan, and I. Feldvari, “Composition and homogeneity of LiNbO3 crystals as related to growth-conditions. 1. The influence of electric-field,” Crystallography 35, 1540–1544 (1990).

Ballman, A. A.

A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Banerjee, P. P.

Bausa, L. E.

M. O. Ramirez, D. Jaque, J. A. Sanz Garcia, L. E. Bausa, and J. E. Munoz Santiuste, “74% slope efficiency from a diode-pumped Yb3+:LiNbO3: MgO laser crystal,” Appl. Phys. B 77, 621–623 (2003).
[Crossref]

A. Lorenzo, L. E. Bausa, and J. Garcia Sole, “Optical characterization of Ho3+ ions in LiNbO3 and in LiNbO3: MgO crystals,” J. Phys. Condens. Matter 6(5), 1065–1078 (1994).
[Crossref]

Bausá, L. E.

A. Lorenzo, L. E. Bausá, J. A. Sanz Garcia, and J. Garcia Solé, “Optical absorption intensities and fluorescence dynamics of Ho3+ in LiNbO3,” J. Phys. Condens. Matter 8(31), 5781–5791 (1996).
[Crossref]

Bazzan, M.

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Bermudez, V.

V. Bermudez, M. D. Serrano, J. Tornero, and E. Dieguez, “Er incorporation into congruent LiNbO3 crystals,” Solid State Chem. 112, 699–703 (1999).

Boulon, G.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. Garcıa-Sole, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[Crossref]

Bourson, P.

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

Bower, R.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[Crossref]

Boyd, C. D.

A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Cao, W.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
[Crossref]

Chadeyron, G.

A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
[Crossref]

Chauvet, M.

J. Safioui, F. Devaux, K. P. Huy, and M. Chauvet, “High intensity behaviour of pyroelectric photorefractive self-focusing in LiNbO3,” Opt. Commun. 294, 294–298 (2013).
[Crossref]

J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17(24), 22209–22216 (2009).
[Crossref] [PubMed]

Cheng, Z.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
[Crossref]

Christiani, I.

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

Ciampolillo, M. V.

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Corradi, G.

K. Polgár, A. Peter, L. Kovacs, G. Corradi, and Zs. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

Cristiani, I.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Da Silva, M. F.

L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
[Crossref]

Daniell, G. J.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Degiorgio, V.

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Devaux, F.

J. Safioui, F. Devaux, K. P. Huy, and M. Chauvet, “High intensity behaviour of pyroelectric photorefractive self-focusing in LiNbO3,” Opt. Commun. 294, 294–298 (2013).
[Crossref]

J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17(24), 22209–22216 (2009).
[Crossref] [PubMed]

Dieguez, E.

V. Bermudez, M. D. Serrano, J. Tornero, and E. Dieguez, “Er incorporation into congruent LiNbO3 crystals,” Solid State Chem. 112, 699–703 (1999).

L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
[Crossref]

Donnerberg, H.

H. Donnerberg, “Comments on the defect chemistry of magnesium-doped lithium niobate (LiNbO3),” J. Solid State Chem. 123(2), 208–214 (1996).
[Crossref]

Dziedzic, J. M.

A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Eason, R. W.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Fazio, E.

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Feldvari, I.

R. N. Balasanyan, V. T. Gabrielyan, E. P. Kokanyan, and I. Feldvari, “Composition and homogeneity of LiNbO3 crystals as related to growth-conditions. 1. The influence of electric-field,” Crystallography 35, 1540–1544 (1990).

Fischer, C.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[Crossref]

Frukacz, Z.

A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
[Crossref]

Furukawa, Y.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3 doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Gabrielyan, V. T.

R. N. Balasanyan, V. T. Gabrielyan, E. P. Kokanyan, and I. Feldvari, “Composition and homogeneity of LiNbO3 crystals as related to growth-conditions. 1. The influence of electric-field,” Crystallography 35, 1540–1544 (1990).

Garcia Sole, J.

A. Lorenzo, L. E. Bausa, and J. Garcia Sole, “Optical characterization of Ho3+ ions in LiNbO3 and in LiNbO3: MgO crystals,” J. Phys. Condens. Matter 6(5), 1065–1078 (1994).
[Crossref]

Garcia Solé, J.

A. Lorenzo, L. E. Bausá, J. A. Sanz Garcia, and J. Garcia Solé, “Optical absorption intensities and fluorescence dynamics of Ho3+ in LiNbO3,” J. Phys. Condens. Matter 8(31), 5781–5791 (1996).
[Crossref]

Garcia-Sole, J.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. Garcıa-Sole, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[Crossref]

Gog, T.

T. Gog, M. Griebenow, and G. Materlik, “X-ray standing wave determination of the lattice location of Er diffused into LiNbO3,” Phys. Lett. A 181(5), 417–420 (1993).
[Crossref]

Griebenow, M.

T. Gog, M. Griebenow, and G. Materlik, “X-ray standing wave determination of the lattice location of Er diffused into LiNbO3,” Phys. Lett. A 181(5), 417–420 (1993).
[Crossref]

Gruber, J. B.

J. B. Gruber, D. K. Sardar, R. M. Yow, B. Zandi, and E. P. Kokanyan, “Modeling the crystal-field splitting of the energy levels of Er3+ in charge-compensated sites in lithium niobate,” Phys. Rev. B 69(19), 195103 (2004).
[Crossref]

Heidari Batheni, S.

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Huy, K. P.

J. Safioui, F. Devaux, K. P. Huy, and M. Chauvet, “High intensity behaviour of pyroelectric photorefractive self-focusing in LiNbO3,” Opt. Commun. 294, 294–298 (2013).
[Crossref]

Imlau, M.

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

Iyi, N.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3 doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Jaffrezic, H.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. Garcıa-Sole, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[Crossref]

Jaque, D.

M. O. Ramirez, D. Jaque, J. A. Sanz Garcia, L. E. Bausa, and J. E. Munoz Santiuste, “74% slope efficiency from a diode-pumped Yb3+:LiNbO3: MgO laser crystal,” Appl. Phys. B 77, 621–623 (2003).
[Crossref]

Jermann, F.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[Crossref]

Joubert, M.-F.

A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
[Crossref]

Kaczkan, M.

A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
[Crossref]

Kimura, S.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3 doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Kitamura, K.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3 doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Kokanyan, E. P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

J. B. Gruber, D. K. Sardar, R. M. Yow, B. Zandi, and E. P. Kokanyan, “Modeling the crystal-field splitting of the energy levels of Er3+ in charge-compensated sites in lithium niobate,” Phys. Rev. B 69(19), 195103 (2004).
[Crossref]

R. N. Balasanyan, V. T. Gabrielyan, E. P. Kokanyan, and I. Feldvari, “Composition and homogeneity of LiNbO3 crystals as related to growth-conditions. 1. The influence of electric-field,” Crystallography 35, 1540–1544 (1990).

Kong, Y.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In,” Appl. Phys. Lett. 66(3), 280–281 (1995).
[Crossref]

Kostritskii, S. M.

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

Kovacs, L.

K. Polgár, A. Peter, L. Kovacs, G. Corradi, and Zs. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

Levinstein, J. J.

A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Li, H. T.

X. H. Zhen, Q. Li, H. T. Li, Y. H. Xu, and L. C. Zhao, “Growth and optical damage resistance of Sc, Er co-doped LiNbO3 crystals,” Cryst. Res. Technol. 40(7), 649–653 (2005).
[Crossref]

Li, Q.

X. H. Zhen, Q. Li, H. T. Li, Y. H. Xu, and L. C. Zhao, “Growth and optical damage resistance of Sc, Er co-doped LiNbO3 crystals,” Cryst. Res. Technol. 40(7), 649–653 (2005).
[Crossref]

Liu, J.-J.

Lorenzo, A.

A. Lorenzo, L. E. Bausá, J. A. Sanz Garcia, and J. Garcia Solé, “Optical absorption intensities and fluorescence dynamics of Ho3+ in LiNbO3,” J. Phys. Condens. Matter 8(31), 5781–5791 (1996).
[Crossref]

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. Garcıa-Sole, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[Crossref]

A. Lorenzo, L. E. Bausa, and J. Garcia Sole, “Optical characterization of Ho3+ ions in LiNbO3 and in LiNbO3: MgO crystals,” J. Phys. Condens. Matter 6(5), 1065–1078 (1994).
[Crossref]

Mailis, S.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Malinowski, M.

A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
[Crossref]

Materlik, G.

T. Gog, M. Griebenow, and G. Materlik, “X-ray standing wave determination of the lattice location of Er diffused into LiNbO3,” Phys. Lett. A 181(5), 417–420 (1993).
[Crossref]

Merschjann, C.

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

Minzioni, P.

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Muir, A. C.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Munoz Santiuste, J. E.

M. O. Ramirez, D. Jaque, J. A. Sanz Garcia, L. E. Bausa, and J. E. Munoz Santiuste, “74% slope efficiency from a diode-pumped Yb3+:LiNbO3: MgO laser crystal,” Appl. Phys. B 77, 621–623 (2003).
[Crossref]

Nassau, K.

A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Nava, G.

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

Peter, A.

K. Polgár, A. Peter, L. Kovacs, G. Corradi, and Zs. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

Petris, A.

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Pettazzi, F.

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Please, C. P.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Polgár, K.

K. Polgár, A. Peter, L. Kovacs, G. Corradi, and Zs. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

Pozza, G.

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

Pracka, I.

A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
[Crossref]

Qiao, H.

Qin, F.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
[Crossref]

Ramirez, M. O.

M. O. Ramirez, D. Jaque, J. A. Sanz Garcia, L. E. Bausa, and J. E. Munoz Santiuste, “74% slope efficiency from a diode-pumped Yb3+:LiNbO3: MgO laser crystal,” Appl. Phys. B 77, 621–623 (2003).
[Crossref]

Razumovski, N. V.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[Crossref]

Razzari, L.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Rebouta, L.

L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
[Crossref]

Roux, B.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. Garcıa-Sole, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[Crossref]

Rubinina, N.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[Crossref]

T. Volk, N. Rubinina, and M. Wohlecke, “Optical damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
[Crossref]

Sada, C.

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Safioui, J.

J. Safioui, F. Devaux, K. P. Huy, and M. Chauvet, “High intensity behaviour of pyroelectric photorefractive self-focusing in LiNbO3,” Opt. Commun. 294, 294–298 (2013).
[Crossref]

J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17(24), 22209–22216 (2009).
[Crossref] [PubMed]

Sanz Garcia, J. A.

M. O. Ramirez, D. Jaque, J. A. Sanz Garcia, L. E. Bausa, and J. E. Munoz Santiuste, “74% slope efficiency from a diode-pumped Yb3+:LiNbO3: MgO laser crystal,” Appl. Phys. B 77, 621–623 (2003).
[Crossref]

A. Lorenzo, L. E. Bausá, J. A. Sanz Garcia, and J. Garcia Solé, “Optical absorption intensities and fluorescence dynamics of Ho3+ in LiNbO3,” J. Phys. Condens. Matter 8(31), 5781–5791 (1996).
[Crossref]

Sardar, D. K.

J. B. Gruber, D. K. Sardar, R. M. Yow, B. Zandi, and E. P. Kokanyan, “Modeling the crystal-field splitting of the energy levels of Er3+ in charge-compensated sites in lithium niobate,” Phys. Rev. B 69(19), 195103 (2004).
[Crossref]

Sato, M.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3 doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Schirmer, O. F.

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

Serrano, D.

L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
[Crossref]

Serrano, M. D.

V. Bermudez, M. D. Serrano, J. Tornero, and E. Dieguez, “Er incorporation into congruent LiNbO3 crystals,” Solid State Chem. 112, 699–703 (1999).

Sevostyanov, O. G.

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

Shimamura, S.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Smith, R. G.

A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Soares, J. C.

L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
[Crossref]

Song, Q. W.

Sota, T.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Sugimoto, A.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Suzuki, K.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Szaller, Zs.

K. Polgár, A. Peter, L. Kovacs, G. Corradi, and Zs. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

Tayebi, P. S.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
[Crossref]

Tomita, Y.

Tornero, J.

V. Bermudez, M. D. Serrano, J. Tornero, and E. Dieguez, “Er incorporation into congruent LiNbO3 crystals,” Solid State Chem. 112, 699–703 (1999).

L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
[Crossref]

Vlad, V. I.

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Volk, T.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[Crossref]

T. Volk, N. Rubinina, and M. Wohlecke, “Optical damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
[Crossref]

Wang, H.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In,” Appl. Phys. Lett. 66(3), 280–281 (1995).
[Crossref]

Watanabe, Y.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Wellington, I. T.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Wen, J.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In,” Appl. Phys. Lett. 66(3), 280–281 (1995).
[Crossref]

Wnuk, A.

A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
[Crossref]

Wohlecke, M.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[Crossref]

T. Volk, N. Rubinina, and M. Wohlecke, “Optical damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
[Crossref]

Wolfersberger, D.

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

Wu, Q.

Xu, J.

Xu, Y. H.

X. H. Zhen, Q. Li, H. T. Li, Y. H. Xu, and L. C. Zhao, “Growth and optical damage resistance of Sc, Er co-doped LiNbO3 crystals,” Cryst. Res. Technol. 40(7), 649–653 (2005).
[Crossref]

Yajima, Y.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

Yamagishi, K.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

J. K. Yamamoto, T. Yamazaki, and K. Yamagishi, “Noncritical phase matching and photorefractive damage in Sc2O3:LiNbO3,” Appl. Phys. Lett. 64(24), 3228–3230 (1994).
[Crossref]

Yamamoto, J. K.

J. K. Yamamoto, T. Yamazaki, and K. Yamagishi, “Noncritical phase matching and photorefractive damage in Sc2O3:LiNbO3,” Appl. Phys. Lett. 64(24), 3228–3230 (1994).
[Crossref]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3 doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Yamazaki, T.

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

J. K. Yamamoto, T. Yamazaki, and K. Yamagishi, “Noncritical phase matching and photorefractive damage in Sc2O3:LiNbO3,” Appl. Phys. Lett. 64(24), 3228–3230 (1994).
[Crossref]

Yow, R. M.

J. B. Gruber, D. K. Sardar, R. M. Yow, B. Zandi, and E. P. Kokanyan, “Modeling the crystal-field splitting of the energy levels of Er3+ in charge-compensated sites in lithium niobate,” Phys. Rev. B 69(19), 195103 (2004).
[Crossref]

Yu, Y.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
[Crossref]

Zandi, B.

J. B. Gruber, D. K. Sardar, R. M. Yow, B. Zandi, and E. P. Kokanyan, “Modeling the crystal-field splitting of the energy levels of Er3+ in charge-compensated sites in lithium niobate,” Phys. Rev. B 69(19), 195103 (2004).
[Crossref]

Zhang, G.

Zhang, Z.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
[Crossref]

Zhao, L. C.

X. H. Zhen, Q. Li, H. T. Li, Y. H. Xu, and L. C. Zhao, “Growth and optical damage resistance of Sc, Er co-doped LiNbO3 crystals,” Cryst. Res. Technol. 40(7), 649–653 (2005).
[Crossref]

Zhen, X. H.

X. H. Zhen, Q. Li, H. T. Li, Y. H. Xu, and L. C. Zhao, “Growth and optical damage resistance of Sc, Er co-doped LiNbO3 crystals,” Cryst. Res. Technol. 40(7), 649–653 (2005).
[Crossref]

Zheng, Y.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
[Crossref]

Appl. Phys. B (1)

M. O. Ramirez, D. Jaque, J. A. Sanz Garcia, L. E. Bausa, and J. E. Munoz Santiuste, “74% slope efficiency from a diode-pumped Yb3+:LiNbO3: MgO laser crystal,” Appl. Phys. B 77, 621–623 (2003).
[Crossref]

Appl. Phys. Lett. (8)

A. Ashkin, C. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

G. Nava, P. Minzioni, I. Christiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, G. Pozza, C. Sada, and V. Degiorgio, “Photorefractive effect at 775 nm in doped lithium niobate crystals,” Appl. Phys. Lett. 103(3), 031904 (2013).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

L. Rebouta, M. F. Da Silva, J. C. Soares, D. Serrano, E. Dieguez, F. Agullo-Lopez, and J. Tornero, “Non-axial sites for Er in LiNbO3,” Appl. Phys. Lett. 70(9), 1070–1072 (1997).
[Crossref]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3 doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

J. K. Yamamoto, T. Yamazaki, and K. Yamagishi, “Noncritical phase matching and photorefractive damage in Sc2O3:LiNbO3,” Appl. Phys. Lett. 64(24), 3228–3230 (1994).
[Crossref]

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In,” Appl. Phys. Lett. 66(3), 280–281 (1995).
[Crossref]

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. Garcıa-Sole, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[Crossref]

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Cryst. Res. Technol. (1)

X. H. Zhen, Q. Li, H. T. Li, Y. H. Xu, and L. C. Zhao, “Growth and optical damage resistance of Sc, Er co-doped LiNbO3 crystals,” Cryst. Res. Technol. 40(7), 649–653 (2005).
[Crossref]

Crystallography (1)

R. N. Balasanyan, V. T. Gabrielyan, E. P. Kokanyan, and I. Feldvari, “Composition and homogeneity of LiNbO3 crystals as related to growth-conditions. 1. The influence of electric-field,” Crystallography 35, 1540–1544 (1990).

J. Alloy. Comp. (2)

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp. 509(4), 1115–1118 (2011).
[Crossref]

A. Wnuk, M. Kaczkan, Z. Frukacz, I. Pracka, G. Chadeyron, M.-F. Joubert, and M. Malinowski, “Infra-red to visible up-conversion in holmium-doped materials,” J. Alloy. Comp. 341(1-2), 353–357 (2002).
[Crossref]

J. Appl. Phys. (2)

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

J. Cryst. Growth (1)

K. Polgár, A. Peter, L. Kovacs, G. Corradi, and Zs. Szaller, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177(3-4), 211–216 (1997).
[Crossref]

J. Opt. (1)

M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M. V. Ciampolillo, S. Heidari Batheni, C. Sada, D. Wolfersberger, A. Petris, V. I. Vlad, and E. Fazio, “Self-confined beams in erbium-doped lithium niobate,” J. Opt. 12(1), 015206 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (3)

S. Shimamura, Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, Y. Yajima, K. Kitamura, T. Yamazaki, A. Sugimoto, and K. Yamagishi, “A defect structure model of LiNbO3:Sc2O3,” J. Phys. Condens. Matter 8(37), 6825–6832 (1996).
[Crossref]

A. Lorenzo, L. E. Bausá, J. A. Sanz Garcia, and J. Garcia Solé, “Optical absorption intensities and fluorescence dynamics of Ho3+ in LiNbO3,” J. Phys. Condens. Matter 8(31), 5781–5791 (1996).
[Crossref]

A. Lorenzo, L. E. Bausa, and J. Garcia Sole, “Optical characterization of Ho3+ ions in LiNbO3 and in LiNbO3: MgO crystals,” J. Phys. Condens. Matter 6(5), 1065–1078 (1994).
[Crossref]

J. Solid State Chem. (1)

H. Donnerberg, “Comments on the defect chemistry of magnesium-doped lithium niobate (LiNbO3),” J. Solid State Chem. 123(2), 208–214 (1996).
[Crossref]

Opt. Commun. (1)

J. Safioui, F. Devaux, K. P. Huy, and M. Chauvet, “High intensity behaviour of pyroelectric photorefractive self-focusing in LiNbO3,” Opt. Commun. 294, 294–298 (2013).
[Crossref]

Opt. Express (2)

Phys. Lett. A (1)

T. Gog, M. Griebenow, and G. Materlik, “X-ray standing wave determination of the lattice location of Er diffused into LiNbO3,” Phys. Lett. A 181(5), 417–420 (1993).
[Crossref]

Phys. Rev. B (2)

J. B. Gruber, D. K. Sardar, R. M. Yow, B. Zandi, and E. P. Kokanyan, “Modeling the crystal-field splitting of the energy levels of Er3+ in charge-compensated sites in lithium niobate,” Phys. Rev. B 69(19), 195103 (2004).
[Crossref]

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

Phys. Status Solidi (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

Solid State Chem. (1)

V. Bermudez, M. D. Serrano, J. Tornero, and E. Dieguez, “Er incorporation into congruent LiNbO3 crystals,” Solid State Chem. 112, 699–703 (1999).

Other (2)

T. Volk and M. Wohlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer, 2008).

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical characterization of Ho:cLN crystals under π configuration. Room temperature: (a) absorption spectra, and (b) fluorescence intensity under 532 nm excitation. (c) Partial energy level diagram of Ho3+ ions in LN and proposed downconversion mechanisms. Solid arrows: radiative transitions, dashed arrows: non-radiative transitions.
Fig. 2
Fig. 2 (a) Schematic of the experimental set-up used for cw optical damage measurements where B: beam block, P: polarizer, L1, L2: lenses, S: sample, M1, M2: low reflectivity mirrors, ND: neutral density filters, F: bandpass filters. The CCD images show the beam profile with and without Sample 1 and 4 in the beam path at 1.52 kW/cm2. (b) R as a function of peak intensity and Ho3+ concentration.
Fig. 3
Fig. 3 Ho:cLN time dependent optical damage measurements. Time dependent transmitted intensity at 2.7 and 250 mW corresponding to 0.027 and 2.55 kW/cm2 intensities respectively for (a), (d) Sample 1, (b), (e) Sample 4, and (c), (f) no sample.
Fig. 4
Fig. 4 Transmitted beam profiles at 488 nm at 0.5 kW/cm2 incident intensity for (a) Sample 1, (b) Sample 2, (c)Sample 3, (d) Sample 4, and (d) no sample.
Fig. 5
Fig. 5 FTIR spectra as function of Ho3+ concentration in Samples 1-4. The numbers indicate the wavenumbers corresponding to the main OH peak for each sample.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

| Δ n e,max |~A[ ( I max trans / I min trans ) 1/2 1]
5 ( In,Sc ) 2 O 3 + 24V Li ' + 6Nb Li 4 + 'LiNbO 3 ' 10(In,Sc) Li + 20V Li ' + 3Nb 2 O 5 ,
5MgO+ 8V Li ' + 2Nb Li 4 + 'LiNbO 3 ' 5Mg Li + 5V Li ' + Nb 2 O 5 .
2 T= w 2 S χ .

Metrics