Abstract

We report new methods for retrieving atmospheric constituents from symmetrically-measured lidar-sounding absorption spectra. The forward model accounts for laser line-center frequency noise and broadened line-shape, and is essentially linearized by linking estimated optical-depths to the mixing ratios. Errors from the spectral distortion and laser frequency drift are substantially reduced by averaging optical-depths at each pair of symmetric wavelength channels. Retrieval errors from measurement noise and model bias are analyzed parametrically and numerically for multiple atmospheric layers, to provide deeper insight. Errors from surface height and reflectance variations are reduced to tolerable levels by “averaging before log” with pulse-by-pulse ranging knowledge incorporated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra

Jeffrey R. Chen, Kenji Numata, and Stewart T. Wu
Opt. Express 23(3) 2660-2675 (2015)

Error reduction methods for integrated-path differential-absorption lidar measurements

Jeffrey R. Chen, Kenji Numata, and Stewart T. Wu
Opt. Express 20(14) 15589-15609 (2012)

Sensitivity analysis and correction algorithms for atmospheric CO2 measurements with 1.57-µm airborne double-pulse IPDA LIDAR

Yadan Zhu, Jiqiao Liu, Xiao Chen, Xiaopeng Zhu, Decang Bi, and Weibiao Chen
Opt. Express 27(22) 32679-32699 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Space Studies Board, National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies, 2007).
  2. A-SCOPE—advanced space carbon and climate observation of planet earth, report for assessment,” ESA-SP1313/1(European Space Agency, 2008), http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf .
  3. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
    [Crossref]
  4. J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (CD) (Optical Society of America, 2008), paper LMA4.
  5. R. T. Menzies and M. T. Chahine, “Remote atmospheric sensing with an airborne laser absorption spectrometer,” Appl. Opt. 13(12), 2840–2849 (1974).
    [Crossref] [PubMed]
  6. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 770–783 (2010).
    [Crossref]
  7. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2.,” Appl. Opt. 48(28), 5413–5422 (2009).
    [Crossref] [PubMed]
  8. K. Numata, J. R. Chen, and S. T. Wu, “Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser,” Opt. Express 20(13), 14234–14243 (2012).
    [Crossref] [PubMed]
  9. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50(7), 1047–1056 (2011).
    [Crossref] [PubMed]
  10. H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, and J. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
    [Crossref] [PubMed]
  11. H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51(34), 8296–8305 (2012).
    [Crossref] [PubMed]
  12. J. Caron, Y. Durand, J. L. Bezy, and R. Meynart, “Performance modeling for A-SCOPE, a spaceborne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E1 (2009).
    [Crossref]
  13. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42(33), 6569–6577 (2003).
    [Crossref] [PubMed]
  14. J. B. Abshire, H. Riris, C. J. Weaver, J. Mao, G. R. Allan, W. E. Hasselbrack, and E. V. Browell, “Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar,” Appl. Opt. 52(19), 4446–4461 (2013).
    [Crossref] [PubMed]
  15. S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
    [Crossref]
  16. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20(14), 15589–15609 (2012).
    [Crossref] [PubMed]
  17. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000), Vol. 2.
  18. E. Dufour and F. M. Bréon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis,” Appl. Opt. 42(18), 3595–3609 (2003).
    [Crossref] [PubMed]
  19. J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43(4), 914–927 (2004).
    [Crossref] [PubMed]
  20. D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
    [Crossref] [PubMed]
  21. D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
    [Crossref]
  22. W. B. Grant, “Effect of differential spectral reflectance on DIAL measurements using topographic targets,” Appl. Opt. 21(13), 2390–2394 (1982).
    [Crossref] [PubMed]
  23. J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).
  24. N. Z. Hakim, M. C. Teich, and B. E. A. Saleh, “Generalized excess noise factor for avalanche photodiodes of arbitrary structure,” IEEE Trans. Electron. Dev. 37(3), 599–610 (1990).
    [Crossref]
  25. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
    [Crossref] [PubMed]
  26. J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
    [Crossref]
  27. A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. 2(2), 755–772 (2009).
    [Crossref]

2013 (2)

2012 (4)

2011 (4)

J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
[Crossref]

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
[Crossref] [PubMed]

K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50(7), 1047–1056 (2011).
[Crossref] [PubMed]

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
[Crossref] [PubMed]

2010 (2)

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 770–783 (2010).
[Crossref]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[Crossref]

2009 (3)

J. Caron, Y. Durand, J. L. Bezy, and R. Meynart, “Performance modeling for A-SCOPE, a spaceborne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E1 (2009).
[Crossref]

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. 2(2), 755–772 (2009).
[Crossref]

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2.,” Appl. Opt. 48(28), 5413–5422 (2009).
[Crossref] [PubMed]

2008 (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

2004 (1)

2003 (2)

1990 (1)

N. Z. Hakim, M. C. Teich, and B. E. A. Saleh, “Generalized excess noise factor for avalanche photodiodes of arbitrary structure,” IEEE Trans. Electron. Dev. 37(3), 599–610 (1990).
[Crossref]

1982 (1)

1974 (1)

Abshire, J.

Abshire, J. B.

Allan, G. R.

Amediek, A.

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. 2(2), 755–772 (2009).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Beck, J. D.

J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
[Crossref]

Benner, D. C.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Bezy, J. L.

J. Caron, Y. Durand, J. L. Bezy, and R. Meynart, “Performance modeling for A-SCOPE, a spaceborne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E1 (2009).
[Crossref]

Bielska, K.

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
[Crossref] [PubMed]

Biraud, S.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 770–783 (2010).
[Crossref]

Bréon, F. M.

Browell, E. V.

Brown, L. R.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Caron, J.

J. Caron, Y. Durand, J. L. Bezy, and R. Meynart, “Performance modeling for A-SCOPE, a spaceborne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E1 (2009).
[Crossref]

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2.,” Appl. Opt. 48(28), 5413–5422 (2009).
[Crossref] [PubMed]

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. 2(2), 755–772 (2009).
[Crossref]

Castaño, R.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Chahine, M. T.

Chen, J. R.

Choi, Y.

Christensen, L. E.

Collatz, G. J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[Crossref]

Crisp, D.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Dawsey, M.

Devi, V. M.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Dufour, E.

Durand, Y.

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2.,” Appl. Opt. 48(28), 5413–5422 (2009).
[Crossref] [PubMed]

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. 2(2), 755–772 (2009).
[Crossref]

J. Caron, Y. Durand, J. L. Bezy, and R. Meynart, “Performance modeling for A-SCOPE, a spaceborne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E1 (2009).
[Crossref]

Ehret, G.

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. 2(2), 755–772 (2009).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Fix, A.

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. 2(2), 755–772 (2009).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Gleckler, A. D.

J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
[Crossref]

Grant, W. B.

Hakim, N. Z.

N. Z. Hakim, M. C. Teich, and B. E. A. Saleh, “Generalized excess noise factor for avalanche photodiodes of arbitrary structure,” IEEE Trans. Electron. Dev. 37(3), 599–610 (1990).
[Crossref]

Hasselbrack, W.

Hasselbrack, W. E.

J. B. Abshire, H. Riris, C. J. Weaver, J. Mao, G. R. Allan, W. E. Hasselbrack, and E. V. Browell, “Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar,” Appl. Opt. 52(19), 4446–4461 (2013).
[Crossref] [PubMed]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 770–783 (2010).
[Crossref]

Havey, D. K.

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
[Crossref] [PubMed]

Hodges, J. T.

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
[Crossref] [PubMed]

Houweling, S.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Jacob, J.

Jiang, Y.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Kawa, R.

Kawa, S. R.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 770–783 (2010).
[Crossref]

J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43(4), 914–927 (2004).
[Crossref] [PubMed]

Kiemle, C.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Krainak, M. A.

Li, S.

Lisak, D.

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
[Crossref] [PubMed]

Long, D. A.

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
[Crossref] [PubMed]

Mao, J.

H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, and J. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
[Crossref] [PubMed]

J. B. Abshire, H. Riris, C. J. Weaver, J. Mao, G. R. Allan, W. E. Hasselbrack, and E. V. Browell, “Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar,” Appl. Opt. 52(19), 4446–4461 (2013).
[Crossref] [PubMed]

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51(34), 8296–8305 (2012).
[Crossref] [PubMed]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 770–783 (2010).
[Crossref]

J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43(4), 914–927 (2004).
[Crossref] [PubMed]

Martin, R. J.

J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
[Crossref]

Menzies, R. T.

Meynart, R.

J. Caron, Y. Durand, J. L. Bezy, and R. Meynart, “Performance modeling for A-SCOPE, a spaceborne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E1 (2009).
[Crossref]

Miller, C. E.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
[Crossref] [PubMed]

Mitra, P.

J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
[Crossref]

Natraj, V.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Numata, K.

Okumura, M.

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
[Crossref] [PubMed]

Oyafuso, F.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Phillips, M. W.

Ramanathan, A.

Riris, H.

Rodriguez, M.

Saleh, B. E. A.

N. Z. Hakim, M. C. Teich, and B. E. A. Saleh, “Generalized excess noise factor for avalanche photodiodes of arbitrary structure,” IEEE Trans. Electron. Dev. 37(3), 599–610 (1990).
[Crossref]

Scritchfield, R.

J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
[Crossref]

Spiers, G. D.

Stephen, M.

Strittmatter, R.

J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
[Crossref]

Sullivan, W.

J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
[Crossref]

Sun, X.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 770–783 (2010).
[Crossref]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[Crossref]

Sung, K.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Teich, M. C.

N. Z. Hakim, M. C. Teich, and B. E. A. Saleh, “Generalized excess noise factor for avalanche photodiodes of arbitrary structure,” IEEE Trans. Electron. Dev. 37(3), 599–610 (1990).
[Crossref]

Thompson, D. R.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Tratt, D. M.

Weaver, C. J.

J. B. Abshire, H. Riris, C. J. Weaver, J. Mao, G. R. Allan, W. E. Hasselbrack, and E. V. Browell, “Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar,” Appl. Opt. 52(19), 4446–4461 (2013).
[Crossref] [PubMed]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 770–783 (2010).
[Crossref]

Wirth, M.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Wu, S.

Wu, S. T.

Wunch, D.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Appl. Opt. (11)

R. T. Menzies and M. T. Chahine, “Remote atmospheric sensing with an airborne laser absorption spectrometer,” Appl. Opt. 13(12), 2840–2849 (1974).
[Crossref] [PubMed]

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2.,” Appl. Opt. 48(28), 5413–5422 (2009).
[Crossref] [PubMed]

K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50(7), 1047–1056 (2011).
[Crossref] [PubMed]

H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, and J. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
[Crossref] [PubMed]

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51(34), 8296–8305 (2012).
[Crossref] [PubMed]

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42(33), 6569–6577 (2003).
[Crossref] [PubMed]

J. B. Abshire, H. Riris, C. J. Weaver, J. Mao, G. R. Allan, W. E. Hasselbrack, and E. V. Browell, “Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar,” Appl. Opt. 52(19), 4446–4461 (2013).
[Crossref] [PubMed]

E. Dufour and F. M. Bréon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis,” Appl. Opt. 42(18), 3595–3609 (2003).
[Crossref] [PubMed]

J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43(4), 914–927 (2004).
[Crossref] [PubMed]

W. B. Grant, “Effect of differential spectral reflectance on DIAL measurements using topographic targets,” Appl. Opt. 21(13), 2390–2394 (1982).
[Crossref] [PubMed]

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
[Crossref] [PubMed]

Appl. Phys. B (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Atmos. Meas. Tech. (1)

A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. 2(2), 755–772 (2009).
[Crossref]

IEEE Trans. Electron. Dev. (1)

N. Z. Hakim, M. C. Teich, and B. E. A. Saleh, “Generalized excess noise factor for avalanche photodiodes of arbitrary structure,” IEEE Trans. Electron. Dev. 37(3), 599–610 (1990).
[Crossref]

J. Chem. Phys. (1)

D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135(6), 064308 (2011).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transf. 113(17), 2265–2276 (2012).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

J. Caron, Y. Durand, J. L. Bezy, and R. Meynart, “Performance modeling for A-SCOPE, a spaceborne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E1 (2009).
[Crossref]

J. D. Beck, R. Scritchfield, P. Mitra, W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear-mode photon counting with the noiseless gain HgCdTe e-APD,” Proc. SPIE 8033, 80330N (2011).
[Crossref]

Tellus Ser. B, Chem. Phys. Meteorol. (2)

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B, Chem. Phys. Meteorol. 62(5), 770–783 (2010).
[Crossref]

Other (5)

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (CD) (Optical Society of America, 2008), paper LMA4.

Space Studies Board, National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies, 2007).

A-SCOPE—advanced space carbon and climate observation of planet earth, report for assessment,” ESA-SP1313/1(European Space Agency, 2008), http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf .

C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000), Vol. 2.

J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The laser transmitter provides the wavelength-stepped pulse train (left) to repeatedly measure at 4 pairs of symmetric channels across the CO2 absorption line (right).
Fig. 2
Fig. 2 Properties of the atmospheric CO2 absorption line: (left) the two-way monochromatic OD for CO2 (solid green), its slope (dashed red), and the slope of averaged two-way OD τ 0av ( ν i ) (solid purple) as functions of the frequency offset, with blue dots marking the 4 pairs of laser frequency channels; (right) two-way weighting functions for the 4 pairs of monochromatic channels.
Fig. 3
Fig. 3 (left) The measurement noise σ( y i ) for atmospheric CO2 (solid black) as a function of τ 0av ( ν i ) , computed using parameters listed in Table 1. The blue dots mark the four combined frequency channels shown in Fig. 2 (left). Also plotted are partial contributions to σ( y i ) from the shot noise (solid grey), frequency noise (dashed red), solar background (dotted brown), receiver circuitry noise (dash-dotted green), and detector dark count (long-dashed blue). (right) The bias (dotted blue) towards τ 0av ( ν i ) (solid green) due to the laser line-center frequency noise.
Fig. 4
Fig. 4 (left) Relative ce: measured data (grey) and its running average over a length of 50 m (blue), courtesy of A. Amediek of Deutsches Zentrumsurface reflectan für Luft- und Raumfahrt (DLR); (right) retrieval RSE calculated from the surface reflectance data as a function of the starting position for 1-s averaging time along the path (thick red). An average of 10 consecutive RSE values, each observed over 0.1 s averaging time, is also plotted (thin grey).
Fig. 5
Fig. 5 (left) The double-layer retrieval RREs, Δ τ 1 , Δ τ 2 and [R] 1,2 as functions of the boundary pressure p1 between the two layers; (right) The double-layer retrieval RSEs for p1 = 795 hPa, both observed in 1s.
Fig. 6
Fig. 6 (left) The triple-layer retrieval RREs, and (right) the factor F j and effective DAOD Δ τ j as functions of the boundary pressure p2 while p1 is fixed at 795 hPa.
Fig. 7
Fig. 7 (left) The frequency noise PSD of a frequency stabilized master laser; (right) the window functions W ij cov (f) computed for np = 100 and 1000 using the relevant parameters listed in Table 1 and taking the measured surface reflectance as As(i) as described in section 4 (see text for more details).

Tables (1)

Tables Icon

Table 1 Parameters Used for Numerical Estimation of Retrieval Errors

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

τ 0 ( ν F ,p)= 0 p σ 0 ( ν F ,p) N gas (p)(dr/dp)dp = 0 p q gas (p) w 0 ( ν F ,p)dp , w 0 ( ν F ,p) 1 q gas (p) d τ 0 ( ν F ,p) dp = σ 0 ( ν F ,p) m dryair g 1 1+ q H 2 O m H 2 O / m dryair .
τ( ν c ,2r) j=1 n q q j p j p j1 w( ν c ,p)dp .
W s i = E s i A s i exp[ τ( ν c i ,2 r s i ) ],
K ¯ =α W ¯ ,
σ 2 (K)= F e K ¯ + α 2 σ 2 (W).
S NK i k=1 n p K ' s i (k)/[αE ' s i (k) A z i (k)] , A z i (k)exp[ q 1 p( r G i ) p( r s i (k)) w( ν i ,p)dp ].
ln( S NK i ¯ )=τ( ν i ,2 r G i )ln( S A i )ln(1+ b i ), S A i k=1 n p A s i (k) , b i 1 2 σ 2 ( δ ν1 i ) [ ( d τ i d ν c ) 2 d 2 τ i d ν c 2 ] ν i ,
y i OD ln( S NK i )+ C i OD = j=1 n q [ F q OD ] i,j q j + c 0 + c 2 ( Δ ν i ) 2 + ε i OD , [ F q OD ] i,j p j p j1 w( ν i ,p)dp ,
δ νn i (t) 1 k=1 n p A s i (k) k=1 n p [ A s i (i) δ ν1 i ( t+(k1) t p ) ] .
Cov( y i OD , y j OD )Cov[ ln( S NK i ),ln( S NK j ) ]= ( d τ i d ν c ) ν i ( d τ j d ν c ) ν j Cov( δ νnslow i , δ νnslow j ) ( d τ i d ν c ) ν i ( d τ j d ν c ) ν j σ 2 ( δ νslow ).
σ 2 ( y i OD )= F e S K' i ¯ + n p λ bgd Δt S K' i ¯ 2 +[ σ 2 ( δ νnfast i )+ σ 2 ( δ νslow ) ] ( d τ i d ν c ) ν i 2 + ( σ τr i ) 2 , ( σ τr i ) 2 [ 2 σ eff ( ν i , r G i ) N gas (p( r G i )) σ r i ] 2 < W ii cov (f)>.
ε i OD ¯ [ ln( S A i )+ c 0 + c 2 ( Δ ν i ) 2 ]+ b τν i + b τC i + b τr i , b τν i 1 2 σ 2 ( δ νn i ) ( d τ i d ν c ) ν i 2 ln(1+ b i ), b τC i 1 2 ( F e / S K' i ¯ ) 2 3 2 F e n p λ bgd Δt/ S K' i ¯ 3 , b τr i 2 σ eff ( ν i , r G i ) N gas (p( r G i )) δ r i 2 [ σ eff ( ν i , r G i ) N gas (p( r G i )) σ r i ] 2 (1< W ii cov (f)>),
y=F(x,b)+ε= K F x+ε= K q q+ K c c+ε, [ K q ] i,j = [ F q OD ] i,j + [ F q OD ] 2m+1i,j 2 , K c = [ 1, 1, ..., 1 ( Δ ν 1 ) 2 , ( Δ ν 2 ) 2 , ..., ( Δ ν m ) 2 ] T ,
[ S y ] i,j = σ 2 ( δ νslow ) ( d τ av ( ν c ) d ν c ) ν i ( d τ av ( ν c ) d ν c ) ν j 0(ij),
[ S y ] i,i = σ 2 ( y i ) F e ( S K' i ¯ + S K' 2m+1i ¯ ) + 2 n p λ bgd Δt ( S K' i ¯ + S K' 2m+1i ¯ ) 2 + ( σ τνn i ) 2 + ( σ τr i ) 2 + ( σ τr 2m+1i ) 2 4 , ( σ τνn i ) 2 σ 2 ( δ νnfast i ) 4 [ ( d τ i d ν c ) ν i 2 + ( d τ 2m+1i d ν c ) ν 2m+1i 2 ]+ σ 2 ( δ νslow ) ( d τ av ( ν c ) d ν c ) ν i 2 .
F(x)F( x a ) [ x F(x)] x= x a (x x a ), y(x)y( x a ) [ x y(x)] x= x a (x x a ),
x i+1 = x i + ( K i T S y 1 K i + S a 1 ) 1 { K i T S y 1 [y( x i )F( x i )] S a 1 ( x i x a )}, K(x) x [F(x)y]= K F (x)+[ x K q (x)]x x y,
S'= (K ' T S y 1 K'+ S a 1 ) 1 .
K(x)= K F [ (dy/d q 1 ) x ,0,...,0] K F ,
x ' L = ( K F T S y 1 K F + S a 1 ) 1 ( K F T S y 1 y+ S a 1 x a ).
x'x= G y K b (bb')+ G y (ε ε ¯ )+ G y ε ¯ ,
σ(q ' j ) q ' j = [ i=1 m 1/ σ 2 ( y i ) ] 1 M jj Var i (τ ' ij )det(R) = σ Δτ F j Δ τ j , [R] j,j' Cov i ( [K ' q ] i,j , [K ' q ] i,j' ) Var i ( [K ' q ] i,j ) Var i ( [K ' q ] i,j' ) ,
q ' j = Var i ( y i ) det( R j y ) Var i ( [K ' q ] i,j ) det(R) ,
δ q'j q ' j = 2 Var i ( ε i ¯ ) det( R j ε ) Δ τ j det(R) ,
τ( ν c ,2r) 0 2r σ eff ( ν c ,l) N gas (l)dl = 0 p(r) q gas (p)w( ν c ,p)dp , w( ν c ,p)= σ eff f ( ν c ,p)+ σ eff b ( ν c ,p) m dryair g 1 1+ q H 2 O m H 2 O / m dryair .
σ eff ( ν c ,l) 0 σ 0 ( ν F ,l) L N ( ν F ,l)d ν F = 0 σ 0 ( ν F ,l)exp[ τ 0 ( ν F ,l) ]L( ν F ,0)d ν F 0 exp[ τ 0 ( ν F ,l) ]L( ν F ,0)d ν F , τ 0 ( ν F ,l) 0 l σ 0 ( ν F ,l') N gas (l')d l',
σ eff f,b ( ν c ,p)= 0 σ 0 ( ν F ,p)exp[ τ 0 f,b ( ν F ,p) ]L( ν F ,0)d ν F 0 exp[ τ 0 f,b ( ν F ,l) ]L( ν F ,0)d ν F , τ 0 f ( ν F ,p)= τ 0 ( ν F ,p), τ 0 b ( ν F ,p)=2 τ 0 ( ν F ,p(r)) τ 0 ( ν F ,p),
τ 0 ( ν F ,p) j= j p n q q j p j p j1 w 0 ( ν F ,p')dp' .
σ 2 (K ' s i (k)) F e K ' s i (k) ¯ + α 2 σ 2 ( W s i (k))+ λ bgd Δt, λ bgd [ 2α N bgd B o F e + F d λ d + S δ i (f) sin c 2 (fΔt)Δtdf / ( M e e ) 2 ]( 1+1/β ).
C i OD F e 2 ( S NNK i S NK i 2 ) λ bgd Δt 2 ( S NN i S NK i 2 ),
W ij cov (f)=Re( exp[ 1 π(ji)f t p m ] k=1 n p k'=1 n p A s i (k) A s j (k')exp(2 1 π(k'k)f t p ) k=1 n p A s i (k) k'=1 n p A s j (k') ).

Metrics