Abstract

We characterize the timing jitter spectral density of the time-of-flight (TOF) in the indoor atmospheric transfer of optical pulse train over 10 decades of Fourier frequency range (10 μHz – 100 kHz) with sub-100-as resolution using a balanced optical cross-correlator (BOC). Based on the well-known theory for atmospheric transfer of a laser beam, we could fit the measured timing jitter power spectral density to the theory and analyze it with a fairly good agreement from 20 mHz to 10 Hz Fourier frequency range. Moreover, we demonstrate that the BOC-based timing stabilization method can suppress the excess fluctuations in timing from >200 fs (rms) to 2.6 fs (rms) maintained over 130 hours when an optical pulse train is transferred over a 76.2-m long free-space beam path in laboratory environment. The demonstrated stabilization result corresponds to 4 × 10−20 overlapping Allan deviation at 117,000s averaging time.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency comb-based microwave transfer over fiber with 7×10−19 instability using fiber-loop optical-microwave phase detectors

Kwangyun Jung, Junho Shin, Jinho Kang, Stephan Hunziker, Chang-Ki Min, and Jungwon Kim
Opt. Lett. 39(6) 1577-1580 (2014)

Ultra-precise timing and synchronization for large-scale scientific instruments

Ming Xin, Kemal Şafak, and Franz X. Kärtner
Optica 5(12) 1564-1578 (2018)

Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications

Jungwon Kim and Youjian Song
Adv. Opt. Photon. 8(3) 465-540 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
    [Crossref] [PubMed]
  2. O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010).
    [Crossref]
  3. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
    [Crossref] [PubMed]
  4. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
    [Crossref]
  5. K. Jung, J. Shin, J. Kang, S. Hunziker, C. K. Min, and J. Kim, “Frequency comb-based microwave transfer over fiber with 7×10-19 instability using fiber-loop optical-microwave phase detectors,” Opt. Lett. 39(6), 1577–1580 (2014).
    [Crossref] [PubMed]
  6. M. Y. Peng, P. T. Callahan, A. H. Nejadmalayeri, S. Valente, M. Xin, L. Grüner-Nielsen, E. M. Monberg, M. Yan, J. M. Fini, and F. X. Kärtner, “Long-term stable, sub-femtosecond timing distribution via a 1.2-km polarization-maintaining fiber link: approaching 10−20 link stability,” Opt. Express 21(17), 19982–19989 (2013).
    [Crossref] [PubMed]
  7. B. Sprenger, J. Zhang, Z. H. Lu, and L. J. Wang, “Atmospheric transfer of optical and radio frequency clock signals,” Opt. Lett. 34(7), 965–967 (2009).
    [Crossref] [PubMed]
  8. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35(9), 1479–1481 (2010).
    [Crossref] [PubMed]
  9. A. Alatawi, R. P. Gollapalli, and L. Duan, “Radio-frequency clock delivery via free-space frequency comb transmission,” Opt. Lett. 34(21), 3346–3348 (2009).
    [Crossref] [PubMed]
  10. R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photon. J. 2(6), 904–910 (2010).
    [Crossref]
  11. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
    [Crossref]
  12. L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
    [Crossref]
  13. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
    [Crossref]
  14. J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
    [Crossref]
  15. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, NY, 1978).
  16. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media Second Edition (SPIE Press, Bellingham, WA, 2005).
  17. S. Klingebiel, I. Ahmad, C. Wandt, C. Skrobol, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Experimental and theoretical investigation of timing jitter inside a stretcher-compressor setup,” Opt. Express 20(4), 3443–3455 (2012).
    [Crossref] [PubMed]
  18. P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
    [Crossref]
  19. A. M. Kowalevicz, A. Sennaroglu, A. T. Zare, and J. G. Fujimoto, “Design principles of q-preserving multipass-cavity femtosecond lasers,” J. Opt. Soc. Am. B 23(4), 760–770 (2006).
    [Crossref]
  20. V. I. Tatarskii, The effects of the turbulent atmosphere on wave propagation (Keter, Jerusalem, 1971).
  21. A. N. Kolmogorov, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number,” J. Fluid Mech. 13(1), 82–85 (1962).
    [Crossref]

2014 (3)

K. Jung, J. Shin, J. Kang, S. Hunziker, C. K. Min, and J. Kim, “Frequency comb-based microwave transfer over fiber with 7×10-19 instability using fiber-loop optical-microwave phase detectors,” Opt. Lett. 39(6), 1577–1580 (2014).
[Crossref] [PubMed]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

2013 (2)

2012 (2)

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

S. Klingebiel, I. Ahmad, C. Wandt, C. Skrobol, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Experimental and theoretical investigation of timing jitter inside a stretcher-compressor setup,” Opt. Express 20(4), 3443–3455 (2012).
[Crossref] [PubMed]

2010 (3)

R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photon. J. 2(6), 904–910 (2010).
[Crossref]

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010).
[Crossref]

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35(9), 1479–1481 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

2007 (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

2006 (2)

1985 (1)

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[Crossref]

1962 (1)

A. N. Kolmogorov, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number,” J. Fluid Mech. 13(1), 82–85 (1962).
[Crossref]

Acef, O.

Ahmad, I.

Alatawi, A.

Alnis, J.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Amy-Klein, A.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010).
[Crossref]

Baumann, E.

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Callahan, P. T.

Chan, V. W. S.

Chardonnet, C.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010).
[Crossref]

Chen, J.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Cinquegrana, P.

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Clairon, A.

Cleva, S.

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Coddington, I.

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Cox, J. A.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Danailov, M. B.

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Degnan, J. J.

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[Crossref]

Demidovich, A.

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Djerroud, K.

Droste, S.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Duan, L.

R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photon. J. 2(6), 904–910 (2010).
[Crossref]

A. Alatawi, R. P. Gollapalli, and L. Duan, “Radio-frequency clock delivery via free-space frequency comb transmission,” Opt. Lett. 34(21), 3346–3348 (2009).
[Crossref] [PubMed]

Fini, J. M.

Foreman, S. M.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Fujimoto, J. G.

Gaio, G.

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Giorgetta, F. R.

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Gollapalli, R. P.

R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photon. J. 2(6), 904–910 (2010).
[Crossref]

A. Alatawi, R. P. Gollapalli, and L. Duan, “Radio-frequency clock delivery via free-space frequency comb transmission,” Opt. Lett. 34(21), 3346–3348 (2009).
[Crossref] [PubMed]

Grosche, G.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Grüner-Nielsen, L.

Hänsch, T. W.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Holman, K. W.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Holzwarth, R.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Hudson, D. D.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Hunziker, S.

Ivanov, R.

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Jones, D. J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Jung, K.

Kang, J.

Karsch, S.

Kärtner, F. X.

Kim, J.

K. Jung, J. Shin, J. Kang, S. Hunziker, C. K. Min, and J. Kim, “Frequency comb-based microwave transfer over fiber with 7×10-19 instability using fiber-loop optical-microwave phase detectors,” Opt. Lett. 39(6), 1577–1580 (2014).
[Crossref] [PubMed]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Klingebiel, S.

Kolmogorov, A. N.

A. N. Kolmogorov, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number,” J. Fluid Mech. 13(1), 82–85 (1962).
[Crossref]

Kowalevicz, A. M.

Krausz, F.

Kurdi, G.

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Legero, Th.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Lemonde, P.

Lopez, O.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010).
[Crossref]

Lours, M.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010).
[Crossref]

Lu, Z. H.

Major, Z.

Man, C. N.

Min, C. K.

Monberg, E. M.

Nejadmalayeri, A. H.

Newbury, N. R.

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Nikolov, I.

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Peng, M. Y.

Predehl, K.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Raupach, S. M. F.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Samain, E.

Santarelli, G.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010).
[Crossref]

Schnatz, H.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Sennaroglu, A.

Shin, J.

Sigalotti, P.

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Sinclair, L. C.

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Skrobol, C.

Sprenger, B.

Swann, W. C.

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Terra, O.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Trushin, S. A.

Udem, Th.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Valente, S.

Wandt, C.

Wang, L. J.

Wolf, P.

Xin, M.

Yan, M.

Ye, J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Zare, A. T.

Zhang, J.

Appl. Phys. B (1)

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010).
[Crossref]

IEEE Photon. J. (1)

R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photon. J. 2(6), 904–910 (2010).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[Crossref]

J. Fluid Mech. (1)

A. N. Kolmogorov, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number,” J. Fluid Mech. 13(1), 82–85 (1962).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (1)

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

Phys. Rev. Spec. Top-Accel. Beams (1)

P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, “Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser,” Phys. Rev. Spec. Top-Accel. Beams 17(4), 040702 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007).
[Crossref] [PubMed]

Science (1)

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Other (3)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, NY, 1978).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media Second Edition (SPIE Press, Bellingham, WA, 2005).

V. I. Tatarskii, The effects of the turbulent atmosphere on wave propagation (Keter, Jerusalem, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for the characterization and stabilization of the optical pulse train time-of-flight (TOF) of an indoor 76.2-m long free-space link. BOC, balanced optical cross-correlator. DBS, dichroic beam splitter. EDFA, Er-doped fiber amplifier. FR, Faraday rotator. HWP, half-wave plate. M, mirror. PBS, polarization beamsplitter. PD, photodetector. PPKTP, periodically poled KTP. PR, partial reflector. QWP, quarter-wave plate. Inset shows the measured output from the BOC 2 as a function of temporal offset bewteen pulses before and after the 76.2-m link when changing their relative delay using variable optical delay line.
Fig. 2
Fig. 2 Out-of-loop timing drift measurement results (a) before and (b) after TOF stabilization.
Fig. 3
Fig. 3 (a) Out-of-loop timing drift measurement result when BOC-based stabilization is used. (b) The amount of timing drift compensation by PZT and motor stages. (c) Temperature and relative humidity measurement result.
Fig. 4
Fig. 4 Fractional frequency uncertainty in terms of overlapping Allan deviation. (i) Without stabilization (calculated from Fig. 3(b) data). (ii) With stabilization (calculated from Fig. 3(a) data). (iii) τ−1 slope.
Fig. 5
Fig. 5 Power spectral density of the excess timing jitter and drift in the 76.2-m free-space transfer. (a) Without TOF stabilization. (b) With TOF stabilization. (c) Background noise floor of a short link. (d) Fitted curve for atmospheric fluctuations based on the modified Tatarskii spectrum [16].

Metrics