Abstract

Spiral-waveguide amplifiers in erbium-doped aluminum oxide on a silicon wafer are fabricated and characterized. Spirals of several lengths and four different erbium concentrations are studied experimentally and theoretically. A maximum internal net gain of 20 dB in the small-signal-gain regime is measured at the peak emission wavelength of 1532 nm for two sample configurations with waveguide lengths of 12.9 cm and 24.4 cm and concentrations of 1.92 × 1020 cm−3 and 0.95 × 1020 cm−3, respectively. The noise figures of these samples are reported. Gain saturation as a result of increasing signal power and the temperature dependence of gain are studied.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5  dB net gain

Henry C. Frankis, Hamidu M. Mbonde, Dawson B. Bonneville, Chenglin Zhang, Richard Mateman, Arne Leinse, and Jonathan D. B. Bradley
Photon. Res. 8(2) 127-134 (2020)

Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau
J. Opt. Soc. Am. B 27(2) 187-196 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18(2), 1553–1568 (2010).
    [Crossref] [PubMed]
  2. J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
    [Crossref] [PubMed]
  3. S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
    [Crossref]
  4. E. H. Bernhardi, H. A. van Wolferen, L. Agazzi, M. R. Khan, C. G. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
    [Crossref] [PubMed]
  5. D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
    [Crossref] [PubMed]
  6. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm,” Appl. Phys. Lett. 71(20), 2922–2924 (1997).
    [Crossref]
  7. L. H. Slooff, M. J. A. de Dood, A. van Blaaderen, and A. Polman, “Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol-gel films,” J. Non-Cryst. Solids 296(3), 158–164 (2001).
    [Crossref]
  8. J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
    [Crossref] [PubMed]
  9. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
    [Crossref]
  10. L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
    [Crossref] [PubMed]
  11. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
    [Crossref]
  12. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5−6), 375–378 (1997).
    [Crossref]
  13. L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
    [Crossref]
  14. J. Shmulovich, “Er-doped glass waveguide amplifiers on silicon,” in: Rare-Earth-Doped Devices, Proc. SPIE 2996 (San José, CA, 1997), pp. 143–153.
  15. P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008–5012 (2003).
    [Crossref]
  16. F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
    [Crossref]
  17. G. Della Valle, S. Taccheo, G. Sorbello, E. Cianci, V. Foglietti, and R. Laporta, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
    [Crossref]
  18. J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1−2), 119–127 (2010).
    [Crossref]
  19. S. Uhlig and M. Robertsson, “Limitations to and solutions for optical loss in optical backplanes,” J. Lightwave Technol. 24(4), 1710–1724 (2006).
    [Crossref]
  20. L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
    [Crossref]
  21. J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
    [Crossref]
  22. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
    [Crossref]
  23. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
    [Crossref]
  24. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2−3), 311–318 (2007).
    [Crossref]
  25. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
    [Crossref]
  26. B. V. Phoenix, http://www.phoenixbv.com/ .
  27. J. D. B. Bradley, “Al2O3:Er3+ as a gain platform for integrated optics,” Ph.D. Thesis, University of Twente, The Netherlands (2009).
  28. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Appl. Opt. 22(23), 3892–3894 (1983).
    [Crossref] [PubMed]
  29. H. Schober, D. Strauch, and B. Dorner, “Lattice dynamics of sapphire (Al2O3),” Z. Phys. B Condens. Matter 92(3), 273–283 (1993).
    [Crossref]
  30. L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–677 (2013).
    [Crossref]
  31. G. P. Agrawal, Fiber-Optic Communications Systems, (John Wiley & Sons, Inc., 2002), ch. 6.
  32. N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
    [Crossref]

2013 (2)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–677 (2013).
[Crossref]

2012 (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

2011 (2)

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

2010 (5)

2009 (3)

2007 (1)

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2−3), 311–318 (2007).
[Crossref]

2006 (2)

G. Della Valle, S. Taccheo, G. Sorbello, E. Cianci, V. Foglietti, and R. Laporta, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[Crossref]

S. Uhlig and M. Robertsson, “Limitations to and solutions for optical loss in optical backplanes,” J. Lightwave Technol. 24(4), 1710–1724 (2006).
[Crossref]

2004 (1)

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[Crossref]

2003 (2)

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008–5012 (2003).
[Crossref]

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

2001 (1)

L. H. Slooff, M. J. A. de Dood, A. van Blaaderen, and A. Polman, “Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol-gel films,” J. Non-Cryst. Solids 296(3), 158–164 (2001).
[Crossref]

1997 (2)

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm,” Appl. Phys. Lett. 71(20), 2922–2924 (1997).
[Crossref]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5−6), 375–378 (1997).
[Crossref]

1996 (1)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

1993 (2)

H. Schober, D. Strauch, and B. Dorner, “Lattice dynamics of sapphire (Al2O3),” Z. Phys. B Condens. Matter 92(3), 273–283 (1993).
[Crossref]

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

1991 (1)

N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
[Crossref]

1983 (1)

Agazzi, L.

Antipov, O.

Aravazhi, S.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

Ay, F.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1−2), 119–127 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2−3), 311–318 (2007).
[Crossref]

Baets, R.

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5−6), 375–378 (1997).
[Crossref]

Bastard, L.

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Bayon, J. F.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Berger, C.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Bernhardi, E. H.

Beyeler, R.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Blaize, S.

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Blauwendraat, T. P.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[Crossref] [PubMed]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2−3), 311–318 (2007).
[Crossref]

Bramerie, L.

Broquin, J. E.

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Caplen, J. E.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5−6), 375–378 (1997).
[Crossref]

Cassagnetes, C.

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Cianci, E.

G. Della Valle, S. Taccheo, G. Sorbello, E. Cianci, V. Foglietti, and R. Laporta, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[Crossref]

Costa e Silva, M.

Dangel, R.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

de Dood, M. J. A.

L. H. Slooff, M. J. A. de Dood, A. van Blaaderen, and A. Polman, “Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol-gel films,” J. Non-Cryst. Solids 296(3), 158–164 (2001).
[Crossref]

de Ridder, R. M.

de Waal, H.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm,” Appl. Phys. Lett. 71(20), 2922–2924 (1997).
[Crossref]

Delevaque, E.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Della Valle, G.

G. Della Valle, S. Taccheo, G. Sorbello, E. Cianci, V. Foglietti, and R. Laporta, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[Crossref]

Dellmann, L.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

DiCarolis, S.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[Crossref]

Diemeer, M. B. J.

Dijkstra, M.

Dorner, B.

H. Schober, D. Strauch, and B. Dorner, “Lattice dynamics of sapphire (Al2O3),” Z. Phys. B Condens. Matter 92(3), 273–283 (1993).
[Crossref]

Doualan, J. L.

Driessen, A.

Faber, A. J.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm,” Appl. Phys. Lett. 71(20), 2922–2924 (1997).
[Crossref]

Fechner, M.

Foglietti, V.

G. Della Valle, S. Taccheo, G. Sorbello, E. Cianci, V. Foglietti, and R. Laporta, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[Crossref]

García-Blanco, S. M.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

Gay, M.

Georges, T.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Geskus, D.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Gmür, M.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Hamelin, R.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5−6), 375–378 (1997).
[Crossref]

Horst, F.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Huber, G.

Ivakin, E.

Kagi, N.

N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
[Crossref]

Kahn, A.

Khan, M. R.

Kik, P. G.

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008–5012 (2003).
[Crossref]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm,” Appl. Phys. Lett. 71(20), 2922–2924 (1997).
[Crossref]

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Lamouler, P.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Lamprecht, T.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Laporta, R.

G. Della Valle, S. Taccheo, G. Sorbello, E. Cianci, V. Foglietti, and R. Laporta, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[Crossref]

Lum, P.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[Crossref]

Meier, N.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Miller, J. N.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[Crossref]

Moncorgé, R.

Monerie, M.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Morf, T.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Nakamura, K.

N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
[Crossref]

Nilsson, J.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5−6), 375–378 (1997).
[Crossref]

Offrein, B. J.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Oggioni, S.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Okamura, Y.

Oyobe, A.

N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5−6), 375–378 (1997).
[Crossref]

Patel, F. D.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[Crossref]

Pollnau, M.

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–677 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1−2), 119–127 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

E. H. Bernhardi, H. A. van Wolferen, L. Agazzi, M. R. Khan, C. G. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[Crossref] [PubMed]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2−3), 311–318 (2007).
[Crossref]

Polman, A.

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008–5012 (2003).
[Crossref]

L. H. Slooff, M. J. A. de Dood, A. van Blaaderen, and A. Polman, “Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol-gel films,” J. Non-Cryst. Solids 296(3), 158–164 (2001).
[Crossref]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm,” Appl. Phys. Lett. 71(20), 2922–2924 (1997).
[Crossref]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Robertsson, M.

Roelkens, G.

Roeloffzen, C. G.

Schober, H.

H. Schober, D. Strauch, and B. Dorner, “Lattice dynamics of sapphire (Al2O3),” Z. Phys. B Condens. Matter 92(3), 273–283 (1993).
[Crossref]

Sengo, G.

Simon, J. C.

Slooff, L. H.

L. H. Slooff, M. J. A. de Dood, A. van Blaaderen, and A. Polman, “Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol-gel films,” J. Non-Cryst. Solids 296(3), 158–164 (2001).
[Crossref]

Smit, M. K.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Sorbello, G.

G. Della Valle, S. Taccheo, G. Sorbello, E. Cianci, V. Foglietti, and R. Laporta, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[Crossref]

Soulard, R.

Spreafico, M.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Stevens, R.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

Strauch, D.

H. Schober, D. Strauch, and B. Dorner, “Lattice dynamics of sapphire (Al2O3),” Z. Phys. B Condens. Matter 92(3), 273–283 (1993).
[Crossref]

Taccheo, S.

G. Della Valle, S. Taccheo, G. Sorbello, E. Cianci, V. Foglietti, and R. Laporta, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[Crossref]

Tropper, A. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5−6), 375–378 (1997).
[Crossref]

Uhlig, S.

van Blaaderen, A.

L. H. Slooff, M. J. A. de Dood, A. van Blaaderen, and A. Polman, “Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol-gel films,” J. Non-Cryst. Solids 296(3), 158–164 (2001).
[Crossref]

van Dalfsen, K.

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1−2), 119–127 (2010).
[Crossref]

van Dam, C.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

van den Hoven, G. N.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

van Uffelen, J. W. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

van Wolferen, H. A.

Venkatesh, S.

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[Crossref]

Wörhoff, K.

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–677 (2013).
[Crossref]

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1−2), 119–127 (2010).
[Crossref]

E. H. Bernhardi, H. A. van Wolferen, L. Agazzi, M. R. Khan, C. G. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref] [PubMed]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[Crossref] [PubMed]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2−3), 311–318 (2007).
[Crossref]

Yamamoto, S.

Yan, Y. C.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm,” Appl. Phys. Lett. 71(20), 2922–2924 (1997).
[Crossref]

Yang, J.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1−2), 119–127 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

Yoshinaka, S.

Zinoviev, A.

Adv. Mater. (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (2)

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1−2), 119–127 (2010).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2−3), 311–318 (2007).
[Crossref]

Appl. Phys. Lett. (2)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm,” Appl. Phys. Lett. 71(20), 2922–2924 (1997).
[Crossref]

Electron. Lett. (1)

G. Della Valle, S. Taccheo, G. Sorbello, E. Cianci, V. Foglietti, and R. Laporta, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (3)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[Crossref]

J. Appl. Phys. (1)

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008–5012 (2003).
[Crossref]

J. Lightwave Technol. (2)

N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
[Crossref]

S. Uhlig and M. Robertsson, “Limitations to and solutions for optical loss in optical backplanes,” J. Lightwave Technol. 24(4), 1710–1724 (2006).
[Crossref]

J. Non-Cryst. Solids (1)

L. H. Slooff, M. J. A. de Dood, A. van Blaaderen, and A. Polman, “Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol-gel films,” J. Non-Cryst. Solids 296(3), 158–164 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

Laser Photonics Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Opt. Commun. (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibers,” Opt. Commun. 136(5−6), 375–378 (1997).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Z. Phys. B Condens. Matter (1)

H. Schober, D. Strauch, and B. Dorner, “Lattice dynamics of sapphire (Al2O3),” Z. Phys. B Condens. Matter 92(3), 273–283 (1993).
[Crossref]

Other (5)

G. P. Agrawal, Fiber-Optic Communications Systems, (John Wiley & Sons, Inc., 2002), ch. 6.

J. Shmulovich, “Er-doped glass waveguide amplifiers on silicon,” in: Rare-Earth-Doped Devices, Proc. SPIE 2996 (San José, CA, 1997), pp. 143–153.

L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” in Proc. 57th Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1288−1293.
[Crossref]

B. V. Phoenix, http://www.phoenixbv.com/ .

J. D. B. Bradley, “Al2O3:Er3+ as a gain platform for integrated optics,” Ph.D. Thesis, University of Twente, The Netherlands (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Waveguide amplifier cross-section and simulated signal-mode profile. (b) Photograph of a pumped (λP = 976 nm) Al2O3:Er3+ spiral amplifier on a silicon chip. A close-up view of the spiral amplifier is shown in the inset.
Fig. 2
Fig. 2 (a) Infrared image (λ = 1320 nm) of a quarter of a spiral-shaped channel waveguide. (b) Intensity distribution along the propagation direction in the spiral-shaped channel waveguide measured by applying the imaging method described in [28].
Fig. 3
Fig. 3 Internal net gain in Al2O3:Er3+ spiral waveguide amplifiers: simulations with (solid blue curves) and without (dashed black curves) considering the fraction of quenched ions, and measurements (red circles) for different waveguide lengths and Er3+ concentrations of 0.45 × 1020 cm−3 (Series A), 0.95 × 1020 cm−3 (Series B), 1.92 × 1020 cm−3 (Series C), and 3.0 × 1020 cm−3 (Series D). Simulations are based on the quenched-ion amplifier model [13] and the parameters given in Table 1.
Fig. 4
Fig. 4 (a) Defect in contact with the waveguide. (b) Drop of green upconversion luminescence as a result of pump power scattered at the defect location (red circle).
Fig. 5
Fig. 5 (a) Measured (symbols) and simulated (curves) internal net gain at different launched signal powers for the 12.9-cm-long spiral waveguide with an Er3+ concentration of 1.92 × 1020 cm−3 at different pump powers. (b) Maximum internal net gain as a function of launched signal power for two samples with concentrations of 0.95 × 1020 cm−3 (black) and 1.92 × 1020 cm−3 (red) and lengths of 24.45 and 12.91 cm, respectively. The data points show the measured values, while the continuous, dashed, and dotted curves show the simulated values including and excluding fq, respectively.
Fig. 6
Fig. 6 (a) Measured internal net gain at different sample temperatures for the 12.9-cm-long spiral waveguide with an Er3+ concentration of 0.95 × 1020 cm−3. A linear fit is shown as a dashed line. (b) Normalized amplified-spontaneous-emission spectra recorded at 17.5 and 142.4°C.

Tables (1)

Tables Icon

Table 1 Parameters and Values Applied to the Gain Simulation. Sources a) [13], b) [30], and c) [23].

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

G ( λ ) = 10 log 10 [ I p ( λ ) / I u ( λ ) ] α a b s ( λ ) α l o s s ( λ ) ,
d N 2 , a / q d t = R P , a / q + W E T U N 1 , a / q 2 1 τ 2 N 2 , a / q = 0 ,
d N 1 , a / q d t = R S , a / q 2 W E T U N 1 , a / q 2 + 1 τ 2 N 2 , a / q 1 τ 1 , a / q N 1 , a / q = 0 ,
f a / q N d = N 0 , a / q + N 1 , a / q + N 2 , a / q ,
R P , a / q = λ P h c I P [ σ a , P N 0 , a / q σ e , P N 2 , a / q ] ,
R S , a / q = λ S h c I S [ σ e , S N 1 , a / q σ a , S N 0 , a / q ] .
W E T U = π 2 3 C D D C D A N d .
d P P ( z ) d z = P P ( z ) { A E r Ψ P [ σ e , P N 2 , a / q ( σ a , P N 0 , a / q + σ E S A , P N 2 , a / q ) ] d x d y α l o s s ( λ P ) } .
d P S ( z ) d z = P S ( z ) { A E r Ψ S [ σ e , S N 1 , a / q σ a , S N 0 , a / q ] d x d y α l o s s ( λ S ) } ,

Metrics