Abstract

We put forward a route-asymmetrical optical transmission scheme employing optical gradient force, which means that forward and backward propagation of an optical device have different transmittance provided they are not present simultaneously. The device is based on optical gradient force between two single-mode waveguides followed by a Mach-Zehnder interferometer. Our numerical investigation shows that the forward transmittance is about −6 dB while the backward transmittance is suppressed below −20.5 dB in C + L bands. The proposed device is passive, wideband, and compatible with complementary metal-oxide semiconductor (CMOS) process. Furthermore, we demonstrate the applications of route-asymmetrical transmission such as an all-optical switch and all-optical AND gate for all-optical information processing.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface

Yonghong Ling, Lirong Huang, Wei Hong, Tongjun Liu, Yali Sun, Jing Luan, and Gang Yuan
Opt. Express 25(12) 13648-13658 (2017)

Photonic-crystal-based all-optical NOT logic gate

Brahm Raj Singh and Swati Rawal
J. Opt. Soc. Am. A 32(12) 2260-2263 (2015)

Terabit all-optical logic based on ultrafast two-dimensional transmission gating

Makoto Naruse, Hiroyuki Mitsu, Makoto Furuki, Izumi Iwasa, Yasuhiro Sato, Satoshi Tatsuura, Minquan Tian, and Fumito Kubota
Opt. Lett. 29(6) 608-610 (2004)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  2. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
    [Crossref] [PubMed]
  3. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [Crossref] [PubMed]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [Crossref]
  6. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [Crossref] [PubMed]
  7. C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, and B. J. Eggleton, “Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide,” Opt. Express 19(21), 20681–20690 (2011).
    [Crossref] [PubMed]
  8. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [Crossref] [PubMed]
  9. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  10. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
    [Crossref] [PubMed]
  11. M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
    [Crossref]
  12. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
    [Crossref] [PubMed]
  13. X. Guo, C.-L. Zou, X.-F. Ren, F.-W. Sun, and G.-C. Guo, “Broadband opto-mechanical phase shifter for photonic integrated circuits,” Appl. Phys. Lett. 101, 071114 (2012).
  14. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
    [Crossref]
  15. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
    [Crossref]
  16. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
    [Crossref] [PubMed]
  17. L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
    [Crossref] [PubMed]
  18. P. T. Rakich, M. A. Popović, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express 17(20), 18116–18135 (2009).
    [Crossref] [PubMed]
  19. J. Ma and M. L. Povinelli, “Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides,” Opt. Express 19(11), 10102–10110 (2011).
    [Crossref] [PubMed]
  20. Lumerical Solutions, Inc., http://www.lumerical.com .
  21. A. N. Cleland, Foundations of Nanomechanics: from Solid-state Theory to Device Applications (Springer, 2002).
  22. M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young's Modulus of Silicon?” Microelectromech. Syst. 19(2), 229–238 (2010).
    [Crossref]
  23. A. L. Lereu, R. H. Farahi, L. Tetard, S. Enoch, T. Thundat, and A. Passian, “Plasmon assisted thermal modulation in nanoparticles,” Opt. Express 21(10), 12145–12158 (2013).
    [Crossref] [PubMed]
  24. A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26(4), 836–841 (2008).
    [Crossref]
  25. A. L. Lereu, “Modulation - Plasmons lend a helping hand,” Nat. Photonics 1(7), 368–369 (2007).
    [Crossref]
  26. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [Crossref]

2013 (2)

2012 (2)

X. Guo, C.-L. Zou, X.-F. Ren, F.-W. Sun, and G.-C. Guo, “Broadband opto-mechanical phase shifter for photonic integrated circuits,” Appl. Phys. Lett. 101, 071114 (2012).

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young's Modulus of Silicon?” Microelectromech. Syst. 19(2), 229–238 (2010).
[Crossref]

2009 (5)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[Crossref] [PubMed]

P. T. Rakich, M. A. Popović, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express 17(20), 18116–18135 (2009).
[Crossref] [PubMed]

2008 (2)

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26(4), 836–841 (2008).
[Crossref]

2007 (4)

A. L. Lereu, “Modulation - Plasmons lend a helping hand,” Nat. Photonics 1(7), 368–369 (2007).
[Crossref]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
[Crossref] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Baets, R.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[Crossref] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Capasso, F.

Corcoran, B.

De Vlaminck, I.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[Crossref] [PubMed]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Eggleton, B. J.

Eichenfield, M.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Enoch, S.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Fan, L.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Farahi, R. H.

A. L. Lereu, R. H. Farahi, L. Tetard, S. Enoch, T. Thundat, and A. Passian, “Plasmon assisted thermal modulation in nanoparticles,” Opt. Express 21(10), 12145–12158 (2013).
[Crossref] [PubMed]

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26(4), 836–841 (2008).
[Crossref]

Ferrell, T. L.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26(4), 836–841 (2008).
[Crossref]

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Fukuda, H.

Gardes, F.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Guo, G.-C.

X. Guo, C.-L. Zou, X.-F. Ren, F.-W. Sun, and G.-C. Guo, “Broadband opto-mechanical phase shifter for photonic integrated circuits,” Appl. Phys. Lett. 101, 071114 (2012).

Guo, X.

X. Guo, C.-L. Zou, X.-F. Ren, F.-W. Sun, and G.-C. Guo, “Broadband opto-mechanical phase shifter for photonic integrated circuits,” Appl. Phys. Lett. 101, 071114 (2012).

Hochberg, M.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Hopcroft, M. A.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young's Modulus of Silicon?” Microelectromech. Syst. 19(2), 229–238 (2010).
[Crossref]

Husko, C.

Ibanescu, M.

Itabashi, S.-i.

Joannopoulos, J. D.

Johnson, S. G.

Kenny, T. W.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young's Modulus of Silicon?” Microelectromech. Syst. 19(2), 229–238 (2010).
[Crossref]

Khan, M. H.

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Krauss, T. F.

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Lagae, L.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[Crossref] [PubMed]

Lereu, A. L.

A. L. Lereu, R. H. Farahi, L. Tetard, S. Enoch, T. Thundat, and A. Passian, “Plasmon assisted thermal modulation in nanoparticles,” Opt. Express 21(10), 12145–12158 (2013).
[Crossref] [PubMed]

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26(4), 836–841 (2008).
[Crossref]

A. L. Lereu, “Modulation - Plasmons lend a helping hand,” Nat. Photonics 1(7), 368–369 (2007).
[Crossref]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Li, J.

Li, M.

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Lin, Q.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

Lipson, M.

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Loncar, M.

Ma, J.

Maes, B.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[Crossref] [PubMed]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Nix, W. D.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young's Modulus of Silicon?” Microelectromech. Syst. 19(2), 229–238 (2010).
[Crossref]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Painter, O.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Passian, A.

A. L. Lereu, R. H. Farahi, L. Tetard, S. Enoch, T. Thundat, and A. Passian, “Plasmon assisted thermal modulation in nanoparticles,” Opt. Express 21(10), 12145–12158 (2013).
[Crossref] [PubMed]

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26(4), 836–841 (2008).
[Crossref]

Perahia, R.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Pernice, W.

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

Pernice, W. H.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Popovic, M. A.

Povinelli, M. L.

Qi, M.

Rakich, P. T.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Ren, X.-F.

X. Guo, C.-L. Zou, X.-F. Ren, F.-W. Sun, and G.-C. Guo, “Broadband opto-mechanical phase shifter for photonic integrated circuits,” Appl. Phys. Lett. 101, 071114 (2012).

Roels, J.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[Crossref] [PubMed]

Rosenberg, J.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

Shen, H.

Shinojima, H.

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Smythe, E. J.

Sun, F.-W.

X. Guo, C.-L. Zou, X.-F. Ren, F.-W. Sun, and G.-C. Guo, “Broadband opto-mechanical phase shifter for photonic integrated circuits,” Appl. Phys. Lett. 101, 071114 (2012).

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Tang, H.

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

Tang, H. X.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Tetard, L.

Thomson, D.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Thundat, T.

A. L. Lereu, R. H. Farahi, L. Tetard, S. Enoch, T. Thundat, and A. Passian, “Plasmon assisted thermal modulation in nanoparticles,” Opt. Express 21(10), 12145–12158 (2013).
[Crossref] [PubMed]

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26(4), 836–841 (2008).
[Crossref]

Tsuchizawa, T.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

van Hulst, N. F.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26(4), 836–841 (2008).
[Crossref]

Van Thourhout, D.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[Crossref] [PubMed]

Varghese, L. T.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Vo, T. D.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Wang, J.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Wang, Z.

Watanabe, T.

Weiner, A. M.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Xiao, S.

Xiong, C.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Xu, Q.

Xuan, Y.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Yamada, K.

Zou, C.-L.

X. Guo, C.-L. Zou, X.-F. Ren, F.-W. Sun, and G.-C. Guo, “Broadband opto-mechanical phase shifter for photonic integrated circuits,” Appl. Phys. Lett. 101, 071114 (2012).

Appl. Phys. Lett. (2)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

X. Guo, C.-L. Zou, X.-F. Ren, F.-W. Sun, and G.-C. Guo, “Broadband opto-mechanical phase shifter for photonic integrated circuits,” Appl. Phys. Lett. 101, 071114 (2012).

J. Vac. Sci. Technol. A (1)

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26(4), 836–841 (2008).
[Crossref]

Microelectromech. Syst. (1)

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young's Modulus of Silicon?” Microelectromech. Syst. 19(2), 229–238 (2010).
[Crossref]

Nat. Nanotechnol. (1)

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[Crossref] [PubMed]

Nat. Photonics (7)

A. L. Lereu, “Modulation - Plasmons lend a helping hand,” Nat. Photonics 1(7), 368–369 (2007).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

Nature (2)

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Science (1)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Other (2)

Lumerical Solutions, Inc., http://www.lumerical.com .

A. N. Cleland, Foundations of Nanomechanics: from Solid-state Theory to Device Applications (Springer, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic structure of the proposed device, (b) Cross section of the two single-mode waveguides, w1 = 350 nm, g1 = 70 nm, h = 220 nm. The coupling length of the two single-mode waveguides is 30 μm, (c) and (d) are the transverse components of the electric field of the symmetric mode and anti-symmetric mode, respectively, (e) and (f) show the distribution of the magnitude of the electric field in the backward and forward propagation, respectively, (g) transverse components of the electric field transmitted in the two single mode waveguides, (h) and (i) show the electric magnitude of the cross section labeled in (g).
Fig. 2
Fig. 2 (a) Effective refractive index of symmetric mode (red line) and anti-symmetric mode (blue line) in the waveguide dependent on the gap. Inset: Zoom-in display of anti-symmetric mode, (b) Optical force of symmetric mode (red line) and anti-symmetric mode (blue line) dependent on the gap. Inset: Zoom-in display of anti-symmetric mode, (c) Optical force of symmetric and anti-symmetric mode for different wavelengths.
Fig. 3
Fig. 3 (a) The maximum deflection of the cantilever changing with the power of the symmetric mode. (b) Deflection curve of the cantilever waveguide with the power set to 3.62 mW. (c) Forward and backward transmission spectra.
Fig. 4
Fig. 4 (a) The schematic structure of the all-optical switch, as well as an all-optical AND gate. (b) and (c) show the distribution of the magnitude of the electric field when the control light is turned off and turned on, respectively.
Fig. 5
Fig. 5 The AND gate function described by the distribution of the magnitude of the electric field. The status of the output port is dependent on the status of the input ports, (a) logic signal ‘0’ AND ‘1’ gets ‘0’, (b) logic signal ‘1’ AND ‘0’ gets ‘0’, (c) logic signal ‘1’ AND ‘1’ gets ‘1’.

Tables (1)

Tables Icon

Table 1 Efficiency of the AND Gate

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F L P = 1 c n e f f d ,
d 4 u d z 4 = 12 E w 1 2 F L P P A ,

Metrics