Abstract

We demonstrate a liquid crystal (LC) microlens array (MLA) fabricated by LCs possessing negative dielectric anisotropy, in conjunction with a cell with a three-electrode structure. The presented LC MLA is polarization-insensitive and can be operated in both concave and convex modes. The shortest focal length of the LC MLA is –2.54 and 2.22 mm in concave and convex mode, respectively. Disclination lines that are usually observed in conventional hole-patterned LC lens can also be avoided because of the vertical alignment treatment of LCs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optically isotropic switchable microlens arrays based on liquid crystal

You-Jin Lee, Chang-Jae Yu, Jae-Ho Lee, Ji-Ho Baek, Youngsik Kim, and Jae-Hoon Kim
Appl. Opt. 53(17) 3633-3636 (2014)

Polarizer-free liquid crystal display with electrically switchable microlens array

You-Jin Lee, Ji-Ho Baek, Youngsik Kim, Jeong Uk Heo, Yeon-Kyu Moon, Jin Seog Gwag, Chang-Jae Yu, and Jae-Hoon Kim
Opt. Express 21(1) 129-134 (2013)

Polarization independent adaptive microlens with a blue-phase liquid crystal

Yan Li and Shin-Tson Wu
Opt. Express 19(9) 8045-8050 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
    [Crossref] [PubMed]
  2. Y. Choi, H. R. Kim, K. H. Lee, Y.-M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
    [Crossref]
  3. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
    [Crossref]
  4. G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).
    [Crossref]
  5. J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,” Opt. Lett. 16(7), 532–534 (1991).
    [Crossref] [PubMed]
  6. T. H. Lin, Y. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006).
    [Crossref] [PubMed]
  7. X. Q. Wang, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38(11), 1775–1777 (2013).
    [Crossref] [PubMed]
  8. S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
    [Crossref]
  9. Y. M. Lou, Q. K. Liu, H. Wang, Y. C. Shi, and S. L. He, “Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens,” Appl. Opt. 49(26), 4995–5000 (2010).
    [Crossref] [PubMed]
  10. H. S. Ji, J. H. Kim, and S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” Opt. Lett. 28(13), 1147–1149 (2003).
    [Crossref] [PubMed]
  11. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).
    [Crossref]
  12. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [Crossref] [PubMed]
  13. H. Ren, S. Xu, and S. T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144–3147 (2013).
    [PubMed]
  14. M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
    [Crossref]
  15. M. Ye and S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).
    [Crossref]
  16. M. Ye, B. Wang, T. Takahashi, and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev. 14(4), 173–175 (2007).
    [Crossref]
  17. M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
    [Crossref]
  18. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
    [Crossref]
  19. M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259(2), 710–722 (2006).
    [Crossref]
  20. C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277–19284 (2008).
    [Crossref] [PubMed]
  21. C. Y. Huang, Y. J. Huang, and Y. H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009).
    [Crossref] [PubMed]
  22. C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
    [Crossref] [PubMed]
  23. M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 18(3), 505–507 (2006).
    [Crossref]
  24. Y. Choi, Y. T. Kim, S. D. Lee, and J. H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
    [Crossref]
  25. A. Y. G. Fuh, S. W. Ko, S. H. Huang, Y. Y. Chen, and T. H. Lin, “Polarization-independent liquid crystal lens based on axially symmetric photoalignment,” Opt. Express 19(3), 2294–2300 (2011).
    [Crossref] [PubMed]
  26. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  27. D. W. Kim, C. J. Yu, H. R. Kim, S. J. Kim, and S. D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
    [Crossref]
  28. Y. J. Lee, C. J. Yu, J. H. Lee, J. H. Baek, Y. Kim, and J. H. Kim, “Optically isotropic switchable microlens arrays based on liquid crystal,” Appl. Opt. 53(17), 3633–3636 (2014).
    [Crossref] [PubMed]
  29. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
    [Crossref]
  30. H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30(4), 376–378 (2005).
    [Crossref] [PubMed]
  31. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
    [Crossref]
  32. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [Crossref] [PubMed]
  33. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [Crossref] [PubMed]
  34. M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
    [Crossref]
  35. Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102 (2010).
    [Crossref]
  36. X. Zhao, C. Liu, D. Zhang, and Y. Luo, “Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab,” Appl. Opt. 51(15), 3024–3030 (2012).
    [Crossref] [PubMed]
  37. H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (3)

2011 (1)

2010 (3)

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Y. M. Lou, Q. K. Liu, H. Wang, Y. C. Shi, and S. L. He, “Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens,” Appl. Opt. 49(26), 4995–5000 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

2007 (4)

M. Ye, B. Wang, T. Takahashi, and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev. 14(4), 173–175 (2007).
[Crossref]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

Y. Choi, H. R. Kim, K. H. Lee, Y.-M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

2006 (6)

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[Crossref] [PubMed]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

D. W. Kim, C. J. Yu, H. R. Kim, S. J. Kim, and S. D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 18(3), 505–507 (2006).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259(2), 710–722 (2006).
[Crossref]

T. H. Lin, Y. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006).
[Crossref] [PubMed]

2005 (3)

Y. Choi, Y. T. Kim, S. D. Lee, and J. H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[Crossref]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30(4), 376–378 (2005).
[Crossref] [PubMed]

2003 (2)

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
[Crossref]

H. S. Ji, J. H. Kim, and S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” Opt. Lett. 28(13), 1147–1149 (2003).
[Crossref] [PubMed]

2002 (2)

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).
[Crossref]

M. Ye and S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).
[Crossref]

1997 (1)

1996 (1)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[Crossref]

1992 (1)

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

1991 (1)

1989 (1)

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).
[Crossref]

Baek, J. H.

Bos, P. J.

Chao, P. C. P.

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, T. A.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Chen, Y. Y.

Chien, L. C.

Chigrinov, V. G.

Chiu, C. W.

Choi, Y.

Y. Choi, H. R. Kim, K. H. Lee, Y.-M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Y. Choi, Y. T. Kim, S. D. Lee, and J. H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[Crossref]

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).
[Crossref]

Clark, M. G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).
[Crossref]

Dai, H. T.

Fan, Y. H.

H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30(4), 376–378 (2005).
[Crossref] [PubMed]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

Ferstl, M.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[Crossref]

Fox, D. W.

Frisch, A.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[Crossref]

Fuh, A. Y. G.

He, S. L.

Hsu, C. J.

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Huang, C. Y.

Huang, S. H.

Huang, Y.

Huang, Y. J.

Hwang, S. J.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Jeng, S. C.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Jeong, J.

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Ji, H. S.

Kawamura, M.

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

Kim, D. W.

D. W. Kim, C. J. Yu, H. R. Kim, S. J. Kim, and S. D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Kim, H. R.

Y. Choi, H. R. Kim, K. H. Lee, Y.-M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

D. W. Kim, C. J. Yu, H. R. Kim, S. J. Kim, and S. D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Kim, J. H.

Y. J. Lee, C. J. Yu, J. H. Lee, J. H. Baek, Y. Kim, and J. H. Kim, “Optically isotropic switchable microlens arrays based on liquid crystal,” Appl. Opt. 53(17), 3633–3636 (2014).
[Crossref] [PubMed]

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Y. Choi, H. R. Kim, K. H. Lee, Y.-M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Y. Choi, Y. T. Kim, S. D. Lee, and J. H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[Crossref]

H. S. Ji, J. H. Kim, and S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” Opt. Lett. 28(13), 1147–1149 (2003).
[Crossref] [PubMed]

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).
[Crossref]

Kim, S. J.

D. W. Kim, C. J. Yu, H. R. Kim, S. J. Kim, and S. D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Kim, Y.

Kim, Y. T.

Y. Choi, Y. T. Kim, S. D. Lee, and J. H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[Crossref]

Kim, Y. W.

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Ko, S. W.

Kumar, S.

Kwok, H. S.

Lavrentovich, O. D.

Lee, J. H.

Lee, K. H.

Y. Choi, H. R. Kim, K. H. Lee, Y.-M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Lee, S. D.

D. W. Kim, C. J. Yu, H. R. Kim, S. J. Kim, and S. D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Y. Choi, Y. T. Kim, S. D. Lee, and J. H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[Crossref]

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).
[Crossref]

Lee, S. H.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Lee, Y. J.

Lee, Y.-M.

Y. Choi, H. R. Kim, K. H. Lee, Y.-M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Li, J.

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Liang, X.

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, K. R.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Lin, T. H.

Lin, Y. C.

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30(4), 376–378 (2005).
[Crossref] [PubMed]

Liu, C.

Liu, Q. K.

Liu, Y. J.

Lou, Y. M.

Luo, D.

Luo, Y.

Masuda, S.

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[Crossref] [PubMed]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

Nose, T.

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[Crossref] [PubMed]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

Park, J. H.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).
[Crossref]

Patel, J. S.

Pishnyak, O.

Powell, N. J.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).
[Crossref]

Purvis, A.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).
[Crossref]

Rastani, K.

Ren, H.

H. Ren, S. Xu, and S. T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144–3147 (2013).
[PubMed]

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30(4), 376–378 (2005).
[Crossref] [PubMed]

Ren, H. W.

Sato, S.

M. Ye, B. Wang, T. Takahashi, and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev. 14(4), 173–175 (2007).
[Crossref]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 18(3), 505–507 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259(2), 710–722 (2006).
[Crossref]

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
[Crossref]

M. Ye and S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).
[Crossref]

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[Crossref] [PubMed]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

Sheu, C. R.

Shi, Y. C.

Srivastava, A. K.

Sun, X. W.

Takahashi, T.

M. Ye, B. Wang, T. Takahashi, and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev. 14(4), 173–175 (2007).
[Crossref]

Tseng, Y. H.

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Wang, B.

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

M. Ye, B. Wang, T. Takahashi, and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev. 14(4), 173–175 (2007).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259(2), 710–722 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 18(3), 505–507 (2006).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
[Crossref]

Wang, H.

Y. M. Lou, Q. K. Liu, H. Wang, Y. C. Shi, and S. L. He, “Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens,” Appl. Opt. 49(26), 4995–5000 (2010).
[Crossref] [PubMed]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

Wang, Q.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Wang, X. Q.

Williams, G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).
[Crossref]

Wu, B.

Wu, J. R.

Wu, S. T.

Xu, M.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Xu, S.

Ye, M.

M. Ye, B. Wang, T. Takahashi, and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev. 14(4), 173–175 (2007).
[Crossref]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259(2), 710–722 (2006).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 18(3), 505–507 (2006).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
[Crossref]

M. Ye and S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).
[Crossref]

Yu, C. J.

Y. J. Lee, C. J. Yu, J. H. Lee, J. H. Baek, Y. Kim, and J. H. Kim, “Optically isotropic switchable microlens arrays based on liquid crystal,” Appl. Opt. 53(17), 3633–3636 (2014).
[Crossref] [PubMed]

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

D. W. Kim, C. J. Yu, H. R. Kim, S. J. Kim, and S. D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Zhang, D.

Zhao, X.

Zhou, Z.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Appl. Phys. Express (1)

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Appl. Phys. Lett. (3)

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

D. W. Kim, C. J. Yu, H. R. Kim, S. J. Kim, and S. D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[Crossref]

Y. Choi, H. R. Kim, K. H. Lee, Y.-M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 18(3), 505–507 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79–81 (2006).
[Crossref]

J. Appl. Phys. (1)

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

J. Disp. Technol. (1)

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[Crossref]

J. Mod. Opt. (1)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[Crossref]

Jpn. J. Appl. Phys. (4)

M. Ye and S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).
[Crossref]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

Y. Choi, Y. T. Kim, S. D. Lee, and J. H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[Crossref]

Opt. Commun. (1)

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259(2), 710–722 (2006).
[Crossref]

Opt. Express (8)

C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277–19284 (2008).
[Crossref] [PubMed]

C. Y. Huang, Y. J. Huang, and Y. H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009).
[Crossref] [PubMed]

C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
[Crossref] [PubMed]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[Crossref] [PubMed]

T. H. Lin, Y. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006).
[Crossref] [PubMed]

A. Y. G. Fuh, S. W. Ko, S. H. Huang, Y. Y. Chen, and T. H. Lin, “Polarization-independent liquid crystal lens based on axially symmetric photoalignment,” Opt. Express 19(3), 2294–2300 (2011).
[Crossref] [PubMed]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[Crossref] [PubMed]

H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. (1)

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).
[Crossref]

Opt. Rev. (1)

M. Ye, B. Wang, T. Takahashi, and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev. 14(4), 173–175 (2007).
[Crossref]

Proc. SPIE (1)

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Operation schemes of the LC MLA: (a) without voltage applied to the cell, (b) concave mode, and (c) convex mode.
Fig. 2
Fig. 2 (a) Structure of the presented LC MLA. Microscope image of (b) photomask and (c) hole array electrode on the etched substrate.
Fig. 3
Fig. 3 Interference fringes of the LC MLA. (a)–(d) Operated in concave mode at voltages of 0, 3, 4.3, and 10 V, respectively; (e)–(h) operated in convex mode at voltages of 0, 40, 55, and 140 V, respectively. The red dotted circles represent the holes on the electrode.
Fig. 4
Fig. 4 Measured focal lengths of the LC MLA as various voltages in (a) concave mode and (b) convex mode.
Fig. 5
Fig. 5 (a) Schematic of the OM; (b) the target image without voltage applied to the LC MLA. Target images with LC MLA operated in concave mode at (c) 0 V, (d) 4.3 V, and (e) 10 V. Target images with LC MLA operated in convex mode at (f) 0 V, (g) 55 V, and (h) 140 V.
Fig. 6
Fig. 6 (a) Focusing images and (b) focusing intensities of the LC MLA at different polarizations of the incident light.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = r 2 2 N λ ,

Metrics