Abstract

Traditional off-line measuring systems find it difficult to measure micro-structured workpieces which have a large volume and heavy weight, such as micro-structured patterned precision roller drums. This paper proposes an autostereoscopy-based three-dimensional (3D) measuring method and develops an innovative measuring system for the 3D on-machine measurement of the micro-structured surfaces, an Autostereoscopy-based Three-Dimensional On-machine Measuring (ATDOM) system. The ATDOM system is compact and capable of fast data acquisition and high accuracy in 3D computational reconstruction of complex surfaces under different measuring environments. A prototype ATDOM system is experimentally verified through a series of measurement experiments conducted on a precision machine tool. The results indicate that the ATDOM system provides an important means for efficient and reliable on-machine measurement of micro-structured surfaces.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional shape measurement using a structured light system with dual projectors

Chufan Jiang, Beatrice Lim, and Song Zhang
Appl. Opt. 57(14) 3983-3990 (2018)

Flexible dynamic measurement method of three-dimensional surface profilometry based on multiple vision sensors

Zhen Liu, Xiaojing Li, Fengjiao Li, and Guangjun Zhang
Opt. Express 23(1) 384-400 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Cheung, M. J. Ren, D. Li, L. B. Kong, S. To, and J. B. Li, “On-machine measurement and characterization of V-groove structure pattern on precision rollers,” Key Eng. Mater. 552, 567–574 (2013).
    [Crossref]
  2. X. Jiang, F. Gao, and A. Mateboer, “An approach of assessment for ultra-precision V-groove structured surfaces,” Proc. EUSPEN. 2.28 (2010).
  3. X. Jiang, “In situ real-time measurement for micro-structured surfaces,” CIRP Ann-Manuf. Techn. 60(1), 563–566 ISSN 0007–8506 (2011).
    [Crossref]
  4. H. Takeuchi, K. Yosizumi, and H. Tsutsumi, “Ultrahigh accurate 3-D profilometer using atomic force probe of measuring nanometer,” Proc. ASPE Winter Topical Meeting on Free-form optics: Design, Fabrication, Metrology and Assembly, 102–107 (2004).
  5. J. K. Van Seggelen, “NanoCMM – A 3D coordinate measuring machine with low moving mass for measuring small products in array with nanometer uncertainty,” PhD Thesis, Technische Universiteit Eindhoven, ISBN 90–386–2629–0 (2007).
  6. A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
    [Crossref]
  7. T. A. M. Ruijl, “Ultra precision coordinate measuring machine - design, calibration and error compensation,” PhD Thesis, Technische Universiteit Delft, ISBN 90–6464–287–7 (2001).
  8. F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
    [Crossref]
  9. P. Lehmann and G. Goch, “Comparison of conventional light scattering and speckle techniques concerning an in-process characterization of engineered surfaces,” CIRP Ann-Manuf. Techn. 49(1), 419–422 (2000).
  10. S. Wang, Y. Tian, C. J. Tay, and C. Quan, “Development of a laser-scattering-based probe for on-line measurement of surface roughness,” Appl. Opt. 42(7), 1318–1324 (2003).
    [Crossref] [PubMed]
  11. Y. K. Fuh, K. C. Hsu, and J. R. Fan, “Rapid in-process measurement of surface roughness using adaptive optics,” Opt. Lett. 37(5), 848–850 (2012).
    [Crossref] [PubMed]
  12. J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
    [Crossref]
  13. Q. Xue, Z. Wang, J. Huang, and J Gao, “The elimination of the errors in the calibration image of 3D measurement with structured light,” Proc. SPIE 8430, Optical Micro- and Nanometrology IV, 84300N (2012).
  14. L. Chen, Y. Xu, and D. Xiao, “3D measurement based on phase-shift and self-calibration,” Proc. SPIE 8759, Eighth International Symposium on Precision Engineering Measurement and Instrumentation, 87591A (2013).
    [Crossref]
  15. H. Zhao, H. Jiang, X. Li, S. Sui, L. Tang, X. Liang, X. Diao, and J. Dai, “The in-situ 3D measurement system combined with CNC machine tools,” Proc. SPIE 8769, International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013), 876912 (2013).
    [Crossref]
  16. F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
    [Crossref]
  17. F. Helmli, R. Danzl, M. Prantl, and M. Grabner, Ultra High Speed 3D Measurement with the Focus Variation Method, Fringe 2013. (Springer Berlin Heidelberg, 2014), pp. 617–622.
  18. T. V. Tishko, V. P. Titar, and D. N. Tishko, “Holographic methods of three-dimensional visualization of microscopic phase objects,” J. Opt. Technol. 72(2), 203–209 (2005).
    [Crossref]
  19. M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).
  20. J. H. Park, Y. Kim, J. Kim, S. W. Min, and B. Lee, “Three-dimensional display scheme based on integral imaging with three-dimensional information processing,” Opt. Express 12(24), 6020–6032 (2004).
    [Crossref] [PubMed]
  21. L. Zhou, X. Zhao, Y. Yang, and X. Yuan, “Voxel model for evaluation of a three-dimensional display and reconstruction in integral imaging,” Opt. Lett. 39(7), 2032–2035 (2014).
    [Crossref] [PubMed]
  22. Y. Frauel and B. Javidi, “Digital Three-dimensional image correlation by use of Computer-reconstructed integral imaging,” Appl. Opt. 41(26), 5488–5496 (2002).
    [Crossref] [PubMed]
  23. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics (Proc. SIGGRAPH) 25, 924–934 (2006).
    [Crossref]
  24. J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [Crossref] [PubMed]
  25. S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
    [Crossref] [PubMed]
  26. D. H. Shin and H. Yoo, “Computational integral imaging reconstruction method of 3D images using pixel-to-pixel mapping and image interpolation,” Opt. Commun. 282(14), 2760–2767 (2009).
    [Crossref]
  27. J. J. Lee, B. G. Lee, and H. Yoo, “Depth extraction of three-dimensional objects using block matching for slice images in synthetic aperture integral imaging,” Appl. Opt. 50(29), 5624–5629 (2011).
    [Crossref] [PubMed]
  28. A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
    [Crossref]
  29. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

C. F. Cheung, M. J. Ren, D. Li, L. B. Kong, S. To, and J. B. Li, “On-machine measurement and characterization of V-groove structure pattern on precision rollers,” Key Eng. Mater. 552, 567–574 (2013).
[Crossref]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

2012 (2)

Y. K. Fuh, K. C. Hsu, and J. R. Fan, “Rapid in-process measurement of surface roughness using adaptive optics,” Opt. Lett. 37(5), 848–850 (2012).
[Crossref] [PubMed]

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

2011 (1)

2010 (2)

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

2009 (2)

D. H. Shin and H. Yoo, “Computational integral imaging reconstruction method of 3D images using pixel-to-pixel mapping and image interpolation,” Opt. Commun. 282(14), 2760–2767 (2009).
[Crossref]

J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[Crossref] [PubMed]

2007 (1)

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

2006 (1)

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
[Crossref]

2005 (1)

2004 (2)

2003 (1)

2002 (1)

2000 (1)

P. Lehmann and G. Goch, “Comparison of conventional light scattering and speckle techniques concerning an in-process characterization of engineered surfaces,” CIRP Ann-Manuf. Techn. 49(1), 419–422 (2000).

1908 (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Chen, F. J.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Chen, K.

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

Cheung, C. F.

C. F. Cheung, M. J. Ren, D. Li, L. B. Kong, S. To, and J. B. Li, “On-machine measurement and characterization of V-groove structure pattern on precision rollers,” Key Eng. Mater. 552, 567–574 (2013).
[Crossref]

Fan, J. R.

Fan, Y. F.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Frauel, Y.

Fuh, Y. K.

Gao, B.

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

Gao, F.

X. Jiang, F. Gao, and A. Mateboer, “An approach of assessment for ultra-precision V-groove structured surfaces,” Proc. EUSPEN. 2.28 (2010).

Goch, G.

P. Lehmann and G. Goch, “Comparison of conventional light scattering and speckle techniques concerning an in-process characterization of engineered surfaces,” CIRP Ann-Manuf. Techn. 49(1), 419–422 (2000).

Han, J.

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

He, X.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

Hong, K.

Hong, S. H.

Hsu, K. C.

Huang, H.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Jang, J. S.

Javidi, B.

Jiang, X.

X. Jiang, F. Gao, and A. Mateboer, “An approach of assessment for ultra-precision V-groove structured surfaces,” Proc. EUSPEN. 2.28 (2010).

Kim, J.

Kim, Y.

Kong, L. B.

C. F. Cheung, M. J. Ren, D. Li, L. B. Kong, S. To, and J. B. Li, “On-machine measurement and characterization of V-groove structure pattern on precision rollers,” Key Eng. Mater. 552, 567–574 (2013).
[Crossref]

Küng, A.

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

Lee, B.

Lee, B. G.

Lee, J. J.

Lehmann, P.

P. Lehmann and G. Goch, “Comparison of conventional light scattering and speckle techniques concerning an in-process characterization of engineered surfaces,” CIRP Ann-Manuf. Techn. 49(1), 419–422 (2000).

Li, D.

C. F. Cheung, M. J. Ren, D. Li, L. B. Kong, S. To, and J. B. Li, “On-machine measurement and characterization of V-groove structure pattern on precision rollers,” Key Eng. Mater. 552, 567–574 (2013).
[Crossref]

Li, J. B.

C. F. Cheung, M. J. Ren, D. Li, L. B. Kong, S. To, and J. B. Li, “On-machine measurement and characterization of V-groove structure pattern on precision rollers,” Key Eng. Mater. 552, 567–574 (2013).
[Crossref]

Lippmann, M. G.

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Liu, S.

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

Liu, W.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

Martinez-Corral, M.

Mateboer, A.

X. Jiang, F. Gao, and A. Mateboer, “An approach of assessment for ultra-precision V-groove structured surfaces,” Proc. EUSPEN. 2.28 (2010).

Meli, F.

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

Min, S. W.

Ohmori, H.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Park, J. H.

Quan, C.

Ren, M. J.

C. F. Cheung, M. J. Ren, D. Li, L. B. Kong, S. To, and J. B. Li, “On-machine measurement and characterization of V-groove structure pattern on precision rollers,” Key Eng. Mater. 552, 567–574 (2013).
[Crossref]

Shi, H.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

Shin, D. H.

D. H. Shin and H. Yoo, “Computational integral imaging reconstruction method of 3D images using pixel-to-pixel mapping and image interpolation,” Opt. Commun. 282(14), 2760–2767 (2009).
[Crossref]

Stern, A.

Tay, C. J.

Thalmann, R.

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

Tian, Y.

Tishko, D. N.

Tishko, T. V.

Titar, V. P.

To, S.

C. F. Cheung, M. J. Ren, D. Li, L. B. Kong, S. To, and J. B. Li, “On-machine measurement and characterization of V-groove structure pattern on precision rollers,” Key Eng. Mater. 552, 567–574 (2013).
[Crossref]

Wang, S.

Wang, Y.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Xiao, X.

Xu, J.

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

Yang, Y.

Yi, Q.

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

Yin, H.

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

Yin, S. H.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Yoo, H.

J. J. Lee, B. G. Lee, and H. Yoo, “Depth extraction of three-dimensional objects using block matching for slice images in synthetic aperture integral imaging,” Appl. Opt. 50(29), 5624–5629 (2011).
[Crossref] [PubMed]

D. H. Shin and H. Yoo, “Computational integral imaging reconstruction method of 3D images using pixel-to-pixel mapping and image interpolation,” Opt. Commun. 282(14), 2760–2767 (2009).
[Crossref]

Yuan, X.

Zhao, J.

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

Zhao, X.

Zhao, Z.

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

Zhou, L.

Zhu, F.

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

Zhu, Y. J.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Appl. Opt. (5)

CIRP Ann-Manuf. Techn. (1)

P. Lehmann and G. Goch, “Comparison of conventional light scattering and speckle techniques concerning an in-process characterization of engineered surfaces,” CIRP Ann-Manuf. Techn. 49(1), 419–422 (2000).

Int. J. Mach. Tools Manuf. (1)

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

J. Opt. Technol. (1)

J. Phys. (Paris) (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Key Eng. Mater. (1)

C. F. Cheung, M. J. Ren, D. Li, L. B. Kong, S. To, and J. B. Li, “On-machine measurement and characterization of V-groove structure pattern on precision rollers,” Key Eng. Mater. 552, 567–574 (2013).
[Crossref]

Meas. Sci. Technol. (1)

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

Opt. Commun. (1)

D. H. Shin and H. Yoo, “Computational integral imaging reconstruction method of 3D images using pixel-to-pixel mapping and image interpolation,” Opt. Commun. 282(14), 2760–2767 (2009).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Xu, B. Gao, J. Han, J. Zhao, S. Liu, Q. Yi, Z. Zhao, H. Yin, and K. Chen, “Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern,” Opt. Laser Technol. 44(3), 587–593 (2012).
[Crossref]

Opt. Lasers Eng. (1)

F. Zhu, W. Liu, H. Shi, and X. He, “Accurate 3D measurement system and calibration for speckle projection method,” Opt. Lasers Eng. 48(11), 1132–1139 (2010).
[Crossref]

Opt. Lett. (2)

Proc. IEEE (1)

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
[Crossref]

Other (10)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics (Proc. SIGGRAPH) 25, 924–934 (2006).
[Crossref]

F. Helmli, R. Danzl, M. Prantl, and M. Grabner, Ultra High Speed 3D Measurement with the Focus Variation Method, Fringe 2013. (Springer Berlin Heidelberg, 2014), pp. 617–622.

Q. Xue, Z. Wang, J. Huang, and J Gao, “The elimination of the errors in the calibration image of 3D measurement with structured light,” Proc. SPIE 8430, Optical Micro- and Nanometrology IV, 84300N (2012).

L. Chen, Y. Xu, and D. Xiao, “3D measurement based on phase-shift and self-calibration,” Proc. SPIE 8759, Eighth International Symposium on Precision Engineering Measurement and Instrumentation, 87591A (2013).
[Crossref]

H. Zhao, H. Jiang, X. Li, S. Sui, L. Tang, X. Liang, X. Diao, and J. Dai, “The in-situ 3D measurement system combined with CNC machine tools,” Proc. SPIE 8769, International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013), 876912 (2013).
[Crossref]

T. A. M. Ruijl, “Ultra precision coordinate measuring machine - design, calibration and error compensation,” PhD Thesis, Technische Universiteit Delft, ISBN 90–6464–287–7 (2001).

X. Jiang, F. Gao, and A. Mateboer, “An approach of assessment for ultra-precision V-groove structured surfaces,” Proc. EUSPEN. 2.28 (2010).

X. Jiang, “In situ real-time measurement for micro-structured surfaces,” CIRP Ann-Manuf. Techn. 60(1), 563–566 ISSN 0007–8506 (2011).
[Crossref]

H. Takeuchi, K. Yosizumi, and H. Tsutsumi, “Ultrahigh accurate 3-D profilometer using atomic force probe of measuring nanometer,” Proc. ASPE Winter Topical Meeting on Free-form optics: Design, Fabrication, Metrology and Assembly, 102–107 (2004).

J. K. Van Seggelen, “NanoCMM – A 3D coordinate measuring machine with low moving mass for measuring small products in array with nanometer uncertainty,” PhD Thesis, Technische Universiteit Eindhoven, ISBN 90–386–2629–0 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Recording process and reconstruction process of the autostereoscopy-based 3D measuring method. Three sample points with different depths are recorded with disparities in the recording process (left figure), and these sample points can be precisely reconstructed in the reconstruction process (right figure) if the two process are symmetrical.
Fig. 2
Fig. 2 Digital refocusing. Sample points with different depth information can only be focally reconstructed on the depth plane to which they belong; information other than this is blurrily reconstructed.
Fig. 3
Fig. 3 3D information of the digital reconstruction of the object space. Only the focused informaion of the related depth plane is processed. This information is digitally reconstructed along the axis to form the 3D information of the object. The sketch shows the 3D information of a spheroid which is reconstructed by several slices of the focused oval-shape information which is the section view of the spheroid.
Fig. 4
Fig. 4 Flowchart of the disparity information direct extraction program
Fig. 5
Fig. 5 ATDOM system sketch and ATDOM system picture. The components in the ATDOM system correspond to each other in the upper and lower pictures. In the system sketch, WD is the working distance of objective lens, and fobj and fMLA are the focal length of the objective lens and MLA.
Fig. 6
Fig. 6 Original design of the pyramid micro-structured surface. The side-view and front-view of the workpiece are shown in the left side and right side of the upper part, and the 3D view of the workpiece is shown in the lower part of the figure.
Fig. 7
Fig. 7 ATDOM system conducting an on-machine measurement with the fabricating machine in order to perform the compensation process of a workpiece with the micro-structure of pyramids subsequently
Fig. 8
Fig. 8 Digital refocusing results. A series of pyramid structures with different foci from top to bottom and digital depth information is shown.

Tables (2)

Tables Icon

Table 1 Specification of the ATDOM System

Tables Icon

Table 2 Measuring data of dimensions of pyramid structure through the ATDOM System

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ D R ( n , 0 ) Δ D R ( n , 0 ) + n × D E I = g g + S D
D P D R = S D S D + g = D P D B
Δ D N p × p ( N p i s a n i n t e g e r . )
D s E I D l N p × p D l g S D
S D 2 S D 1 = D e p t h = g n ( D E I Δ D 2 ( n , 0 ) D E I Δ D 1 ( n , 0 ) ) g n ( D E I N p 2 × p D E I N p 1 × p )

Metrics