Abstract

The Surface Plasmon Polariton (SPP) planar waveguide with amorphous silicon (α-Si) cladding is studied, for empowering the device modulation response. The device is fabricated with multiple quantum wells (MQWs) as the gain media electrically pumped for compensating SPP propagation loss on Au film waveguide. The SPP propagation greatly benefits from the modal gain for the long-range hybrid mode, which is optimized by adopting an α-Si cladding layer accompanied with minimal degradation of mode confinement. The proposed structure presented more sensitive response to electrical manipulation than the one without cladding in experiment.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-range surface plasmon polariton waveguides embedded in fluorinated polymer

Jia Jiang, Claire L. Callender, Sarkis Jacob, Julian P. Noad, Shengrong Chen, John Ballato, and Dennis W. Smith, Jr.
Appl. Opt. 47(21) 3892-3900 (2008)

Spontaneous emission control in high-extraction efficiency plasmonic crystals

Hideo Iwase, Dirk Englund, and Jelena Vučković
Opt. Express 16(1) 426-434 (2008)

Carrier saturation in multiple quantum well metallo-dielectric semiconductor nanolaser: Is bulk material a better choice for gain media?

Felipe Vallini, Qing Gu, Michael Kats, Yeshaiahu Fainman, and Newton C. Frateschi
Opt. Express 21(22) 25985-25998 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4(2), 83–91 (2010).
    [Crossref]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, ““Nano-optics of surface plasmon polaritons,” Phys. Rep. Rev. Sect. Phys. Lett. 408(3–4), 131–314 (2005).
  4. X. Zhang, Y. Li, T. Li, S. Y. Lee, C. Feng, L. Wang, and T. Mei, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35(18), 3075–3077 (2010).
    [Crossref] [PubMed]
  5. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [Crossref] [PubMed]
  6. S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
    [Crossref] [PubMed]
  7. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
    [Crossref] [PubMed]
  8. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
    [Crossref] [PubMed]
  9. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011).
    [Crossref] [PubMed]
  10. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
    [Crossref] [PubMed]
  11. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
    [Crossref] [PubMed]
  12. A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
    [Crossref] [PubMed]
  13. Y. Li, H. Zhang, N. Zhu, T. Mei, D. H. Zhang, and J. Teng, “Short-range surface plasmon propagation supported by stimulated amplification using electrical injection,” Opt. Express 19(22), 22107–22112 (2011).
    [Crossref] [PubMed]
  14. C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
    [PubMed]
  15. I. P. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18(18), 18633–18641 (2010).
    [Crossref] [PubMed]
  16. B. Broberg and S. Lindgren, “Refractive-index of In1-XGaXAsYP1-Y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
    [Crossref]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  18. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
    [Crossref] [PubMed]
  19. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [Crossref] [PubMed]
  20. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structures,” Opt. Express 15(1), 176–182 (2007).
    [Crossref] [PubMed]
  21. S. C. Russev, G. G. Tsutsumanova, and A. N. Tzonev, “Conditions for loss compensation of surface plasmon polaritons propagation on a metal/gain medium boundary,” Plasmonics 7(1), 151–157 (2012).
    [Crossref]
  22. J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
    [Crossref]
  23. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
    [Crossref] [PubMed]

2013 (1)

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[Crossref] [PubMed]

2012 (3)

S. C. Russev, G. G. Tsutsumanova, and A. N. Tzonev, “Conditions for loss compensation of surface plasmon polaritons propagation on a metal/gain medium boundary,” Plasmonics 7(1), 151–157 (2012).
[Crossref]

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
[Crossref]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
[PubMed]

2011 (3)

Y. Li, H. Zhang, N. Zhu, T. Mei, D. H. Zhang, and J. Teng, “Short-range surface plasmon propagation supported by stimulated amplification using electrical injection,” Opt. Express 19(22), 22107–22112 (2011).
[Crossref] [PubMed]

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

2010 (5)

2009 (2)

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

2005 (2)

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, ““Nano-optics of surface plasmon polaritons,” Phys. Rep. Rev. Sect. Phys. Lett. 408(3–4), 131–314 (2005).

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1984 (1)

B. Broberg and S. Lindgren, “Refractive-index of In1-XGaXAsYP1-Y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
[Crossref]

Aitchison, J. S.

Alam, M. Z.

Albrektsen, O.

Aussenegg, F. R.

Babuty, A.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartal, G.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Beaudoin, G.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Berini, P.

Bolger, P. M.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref] [PubMed]

Bouhelier, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Bousseksou, A.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Bradley, D. D. C.

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[Crossref] [PubMed]

Broberg, B.

B. Broberg and S. Lindgren, “Refractive-index of In1-XGaXAsYP1-Y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
[Crossref]

Brongersma, M. L.

Buckley, R.

Catrysse, P. B.

Coello, V.

Colombelli, R.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

De Wilde, Y.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Dereux, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Dickson, W.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref] [PubMed]

Ditlbacher, H.

Doyen, I. M.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eng, L.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Feng, C.

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Galler, N.

Garcia, C.

Geluk, E. J.

Grafström, S.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4(2), 83–91 (2010).
[Crossref]

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Han, Z.

Hickey, S. G.

Hill, M. T.

Hohenau, A.

Karouta, F.

Kéna-Cohen, S.

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[Crossref] [PubMed]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
[Crossref]

Koller, D. M.

Krasavin, A. V.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref] [PubMed]

Krenn, J. R.

Lee, S. Y.

Leitner, A.

Leong, E. S. P.

Li, T.

Li, Y.

Liebscher, L.

Lindgren, S.

B. Broberg and S. Lindgren, “Refractive-index of In1-XGaXAsYP1-Y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
[Crossref]

Ma, R.-M.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Maier, S. A.

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, ““Nano-optics of surface plasmon polaritons,” Phys. Rep. Rev. Sect. Phys. Lett. 408(3–4), 131–314 (2005).

Marell, M.

Markey, L.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Mei, T.

Meier, J.

Mojahedi, M.

Nielsen, M. G.

Ning, C.-Z.

Nötzel, R.

Oei, Y.-S.

Oulton, R. F.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Radko, I. P.

Russev, S. C.

S. C. Russev, G. G. Tsutsumanova, and A. N. Tzonev, “Conditions for loss compensation of surface plasmon polaritons propagation on a metal/gain medium boundary,” Plasmonics 7(1), 151–157 (2012).
[Crossref]

Sagnes, I.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Seidel, J.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Selker, M. D.

Sirtori, C.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Skryabin, D. V.

Smalbrugge, B.

Smit, M. K.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, ““Nano-optics of surface plasmon polaritons,” Phys. Rep. Rev. Sect. Phys. Lett. 408(3–4), 131–314 (2005).

Sorger, V. J.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Stavrinou, P. N.

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[Crossref] [PubMed]

Sun, G.

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
[Crossref]

Sun, M.

Teng, J.

Tetienne, J. P.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Tsutsumanova, G. G.

S. C. Russev, G. G. Tsutsumanova, and A. N. Tzonev, “Conditions for loss compensation of surface plasmon polaritons propagation on a metal/gain medium boundary,” Plasmonics 7(1), 151–157 (2012).
[Crossref]

Tzonev, A. N.

S. C. Russev, G. G. Tsutsumanova, and A. N. Tzonev, “Conditions for loss compensation of surface plasmon polaritons propagation on a metal/gain medium boundary,” Plasmonics 7(1), 151–157 (2012).
[Crossref]

van Veldhoven, P. J.

Vo, T. P.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

Wang, L.

Weeber, J.-C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, ““Nano-optics of surface plasmon polaritons,” Phys. Rep. Rev. Sect. Phys. Lett. 408(3–4), 131–314 (2005).

Zhang, D. H.

Zhang, H.

Zhang, X.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

X. Zhang, Y. Li, T. Li, S. Y. Lee, C. Feng, L. Wang, and T. Mei, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35(18), 3075–3077 (2010).
[Crossref] [PubMed]

Zhu, N.

Zhu, Y.

Zia, R.

Appl. Phys. Lett. (1)

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
[Crossref]

J. Appl. Phys. (1)

B. Broberg and S. Lindgren, “Refractive-index of In1-XGaXAsYP1-Y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (3)

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Nat. Photon. (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4(2), 83–91 (2010).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (7)

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

Y. Li, H. Zhang, N. Zhu, T. Mei, D. H. Zhang, and J. Teng, “Short-range surface plasmon propagation supported by stimulated amplification using electrical injection,” Opt. Express 19(22), 22107–22112 (2011).
[Crossref] [PubMed]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
[PubMed]

I. P. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18(18), 18633–18641 (2010).
[Crossref] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structures,” Opt. Express 15(1), 176–182 (2007).
[Crossref] [PubMed]

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref] [PubMed]

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rep. Rev. Sect. Phys. Lett. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, ““Nano-optics of surface plasmon polaritons,” Phys. Rep. Rev. Sect. Phys. Lett. 408(3–4), 131–314 (2005).

Phys. Rev. Lett. (2)

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Plasmonics (1)

S. C. Russev, G. G. Tsutsumanova, and A. N. Tzonev, “Conditions for loss compensation of surface plasmon polaritons propagation on a metal/gain medium boundary,” Plasmonics 7(1), 151–157 (2012).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Device cross section schematic. (b) The top view of fabricated device with waveguide length of 40µm.
Fig. 2
Fig. 2 Experiment setup. A high precision pulse current source is used for electrical injection. A square wave signal generator provides the driving signal for current source f2, optical chopper f1 and the phase-locked pulse with calculated frequency f2-f1. The differential pulse is the input of lock-in amplifier as reference signal.
Fig. 3
Fig. 3 (a) Plots of mode indices versus cladding thickness labeled with the critical thickness for each mode. (b) TM field distributions for modes with cladding thickness 0nm, 100nm, 160nm, 180nm and 200nm. (c) Mode size and threshold material gain versus cladding thickness for modes with cladding thickness varying from 150nm to 360nm. (d) Plots of Im(neff) versus Im(nMQW) showing the relationship between the modal loss and the material gain. The threshold material gains for attenuation-free propagation of SPPs are labeled on the plots.
Fig. 4
Fig. 4 (a) Plots of output intensity versus current density for devices with various waveguide lengths. The logarithmic scale shows increments at small intensities clearly. (b) Measured intensity versus waveguide length at various current densities and the fitting plots using the exponential form. Experimental samples have α-Si cladding thickness 187nm and waveguide width 20μm.
Fig. 5
Fig. 5 The propagation length fitted from the measurement data under different α-Si film thicknesses. The device without cladding is plotted as the reference. The dash lines are visual aid for indicating the growth trend of propagation length with increasing current density.

Metrics