Abstract

In this paper, based on quasi-conformal transformation optics, a 3D conformal lens made of isotropic and non-resonant metamaterial is designed, which can make a cylindrical conformal array behave similarly to a uniform linear array. After discussion and simplification in the two-dimensional model, we realize the proposed lens by utilizing drilling-hole material in the three-dimensional structure. The ring-like shape and forward-only radiation make it possible to equip the lens on a cylindrical device.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Conceptual design of a beam steering lens through transformation electromagnetics

Jianjia Yi, Shah Nawaz Burokur, and André de Lustrac
Opt. Express 23(10) 12942-12951 (2015)

Wide-angle scannable reflector design using conformal transformation optics

Liang Liang and Sean V. Hum
Opt. Express 21(2) 2133-2146 (2013)

Designing feasible optical devices via conformal mapping

Kan Yao and Xunya Jiang
J. Opt. Soc. Am. B 28(5) 1037-1042 (2011)

References

  • View by:
  • |
  • |
  • |

  1. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
    [Crossref]
  5. H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
    [Crossref]
  6. G. Gok and A. Grbic, “Alternative material parameters for transformation electromagnetics designs,” IEEE Trans. Microw. Theory Tech. 61(4), 1414–1424 (2013).
    [Crossref]
  7. D. H. Kwon and D. H. Werner, “Transformation electromagnetics: An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
    [Crossref]
  8. F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007).
    [Crossref]
  9. J. J. Zhang, Y. Luo, H. S. Chen, and B. I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express 16(15), 10962–10967 (2008).
    [Crossref] [PubMed]
  10. W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, “Layered high-gain lens antennas via discrete optical transformation,” Appl. Phys. Lett. 93(22), 221906 (2008).
    [Crossref]
  11. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Ultradirective antenna via transformation optics,” J. Appl. Phys. 105(10), 104912 (2009).
    [Crossref]
  12. Y. Luo, J. J. Zhang, H. S. Chen, J. T. Huangfu, and L. X. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
    [Crossref]
  13. Y. Luo, J. J. Zhang, L. X. Ran, H. S. Chen, and J. A. Kong, “New concept conformal antennas utilizing metamaterial and transformation optics,” IEEE Antennas Wirel. Propag. Lett. 7, 508–511 (2008).
  14. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  15. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [Crossref]
  16. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Broadband high directivity multibeam emission through transformation optics-enabled metamaterial lenses,” IEEE Trans. Antenn. Propag. 60(11), 5063–5074 (2012).
    [Crossref]
  17. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [Crossref] [PubMed]
  18. Z. Chang, X. M. Zhou, J. Hu, and G. K. Hu, “Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries,” Opt. Express 18(6), 6089–6096 (2010).
    [Crossref] [PubMed]
  19. D. Liu, L. H. Gabrielli, M. Lipson, and S. G. Johnson, “Transformation inverse design,” Opt. Express 21(12), 14223–14243 (2013).
    [Crossref] [PubMed]
  20. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036609 (2005).
    [Crossref] [PubMed]
  21. Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, “A half maxwell fish-eye lens antenna based on gradient-index metamaterials,” IEEE Trans. Antenn. Propag. 60(1), 398–401 (2012).
    [Crossref]
  22. I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
    [Crossref]
  23. Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
    [Crossref]
  24. R. Yang, Z. Y. Lei, L. Chen, Z. X. Wang, and Y. Hao, “Surface wave transformation lens antennas,” IEEE Trans. Antenn. Propag. 62(2), 973–977 (2014).
    [Crossref]
  25. R. Schmied, J. C. Halimeh, and M. Wegener, “Conformal carpet and grating cloaks,” Opt. Express 18(23), 24361–24367 (2010).
    [Crossref] [PubMed]
  26. B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94(24), 244102 (2009).
    [Crossref]
  27. D. H. Kwon, “Quasi-conformal transformation optics lenses for conformal arrays,” IEEE Antennas Wirel. Propag. Lett. 11, 1125–1128 (2012).
    [Crossref]
  28. Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D Appl. Phys. 43(5), 055404 (2010).
    [Crossref]
  29. H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat Commun 1(8), 124 (2010).
    [Crossref] [PubMed]
  30. H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, “Three-dimensional gradient-index materials and their applications in microwave lens antennas,” IEEE Trans. Antenn. Propag. 61(5), 2561–2569 (2013).
    [Crossref]
  31. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1996).
  32. S. A. Cummer, N. Kundtz, and B. I. Popa, “Electromagnetic surface and line sources under coordinate transformations,” Phys. Rev. A 80(3), 033820 (2009).
    [Crossref]

2014 (1)

R. Yang, Z. Y. Lei, L. Chen, Z. X. Wang, and Y. Hao, “Surface wave transformation lens antennas,” IEEE Trans. Antenn. Propag. 62(2), 973–977 (2014).
[Crossref]

2013 (4)

D. Liu, L. H. Gabrielli, M. Lipson, and S. G. Johnson, “Transformation inverse design,” Opt. Express 21(12), 14223–14243 (2013).
[Crossref] [PubMed]

H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, “Three-dimensional gradient-index materials and their applications in microwave lens antennas,” IEEE Trans. Antenn. Propag. 61(5), 2561–2569 (2013).
[Crossref]

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
[Crossref]

G. Gok and A. Grbic, “Alternative material parameters for transformation electromagnetics designs,” IEEE Trans. Microw. Theory Tech. 61(4), 1414–1424 (2013).
[Crossref]

2012 (4)

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Broadband high directivity multibeam emission through transformation optics-enabled metamaterial lenses,” IEEE Trans. Antenn. Propag. 60(11), 5063–5074 (2012).
[Crossref]

Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, “A half maxwell fish-eye lens antenna based on gradient-index metamaterials,” IEEE Trans. Antenn. Propag. 60(1), 398–401 (2012).
[Crossref]

I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
[Crossref]

D. H. Kwon, “Quasi-conformal transformation optics lenses for conformal arrays,” IEEE Antennas Wirel. Propag. Lett. 11, 1125–1128 (2012).
[Crossref]

2010 (5)

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D Appl. Phys. 43(5), 055404 (2010).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat Commun 1(8), 124 (2010).
[Crossref] [PubMed]

R. Schmied, J. C. Halimeh, and M. Wegener, “Conformal carpet and grating cloaks,” Opt. Express 18(23), 24361–24367 (2010).
[Crossref] [PubMed]

Z. Chang, X. M. Zhou, J. Hu, and G. K. Hu, “Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries,” Opt. Express 18(6), 6089–6096 (2010).
[Crossref] [PubMed]

D. H. Kwon and D. H. Werner, “Transformation electromagnetics: An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
[Crossref]

2009 (4)

P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Ultradirective antenna via transformation optics,” J. Appl. Phys. 105(10), 104912 (2009).
[Crossref]

Y. Luo, J. J. Zhang, H. S. Chen, J. T. Huangfu, and L. X. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94(24), 244102 (2009).
[Crossref]

S. A. Cummer, N. Kundtz, and B. I. Popa, “Electromagnetic surface and line sources under coordinate transformations,” Phys. Rev. A 80(3), 033820 (2009).
[Crossref]

2008 (5)

Y. Luo, J. J. Zhang, L. X. Ran, H. S. Chen, and J. A. Kong, “New concept conformal antennas utilizing metamaterial and transformation optics,” IEEE Antennas Wirel. Propag. Lett. 7, 508–511 (2008).

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

J. J. Zhang, Y. Luo, H. S. Chen, and B. I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express 16(15), 10962–10967 (2008).
[Crossref] [PubMed]

W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, “Layered high-gain lens antennas via discrete optical transformation,” Appl. Phys. Lett. 93(22), 221906 (2008).
[Crossref]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

2007 (2)

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
[Crossref]

F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007).
[Crossref]

2006 (4)

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

2005 (1)

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036609 (2005).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Abiri, H.

I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
[Crossref]

Aghanejad, I.

I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
[Crossref]

Allen, J.

B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94(24), 244102 (2009).
[Crossref]

Bai, J.

Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, “A half maxwell fish-eye lens antenna based on gradient-index metamaterials,” IEEE Trans. Antenn. Propag. 60(1), 398–401 (2012).
[Crossref]

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D Appl. Phys. 43(5), 055404 (2010).
[Crossref]

Burokur, S. N.

P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Ultradirective antenna via transformation optics,” J. Appl. Phys. 105(10), 104912 (2009).
[Crossref]

Cai, B. G.

H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, “Three-dimensional gradient-index materials and their applications in microwave lens antennas,” IEEE Trans. Antenn. Propag. 61(5), 2561–2569 (2013).
[Crossref]

Chan, C. T.

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
[Crossref]

Chang, Z.

Chen, H. S.

Y. Luo, J. J. Zhang, H. S. Chen, J. T. Huangfu, and L. X. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

Y. Luo, J. J. Zhang, L. X. Ran, H. S. Chen, and J. A. Kong, “New concept conformal antennas utilizing metamaterial and transformation optics,” IEEE Antennas Wirel. Propag. Lett. 7, 508–511 (2008).

J. J. Zhang, Y. Luo, H. S. Chen, and B. I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express 16(15), 10962–10967 (2008).
[Crossref] [PubMed]

F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007).
[Crossref]

Chen, H. Y.

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
[Crossref]

Chen, L.

R. Yang, Z. Y. Lei, L. Chen, Z. X. Wang, and Y. Hao, “Surface wave transformation lens antennas,” IEEE Trans. Antenn. Propag. 62(2), 973–977 (2014).
[Crossref]

Cheng, Q.

W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, “Layered high-gain lens antennas via discrete optical transformation,” Appl. Phys. Lett. 93(22), 221906 (2008).
[Crossref]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Chin, J. Y.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Cui, T. J.

H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, “Three-dimensional gradient-index materials and their applications in microwave lens antennas,” IEEE Trans. Antenn. Propag. 61(5), 2561–2569 (2013).
[Crossref]

Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, “A half maxwell fish-eye lens antenna based on gradient-index metamaterials,” IEEE Trans. Antenn. Propag. 60(1), 398–401 (2012).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat Commun 1(8), 124 (2010).
[Crossref] [PubMed]

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D Appl. Phys. 43(5), 055404 (2010).
[Crossref]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, “Layered high-gain lens antennas via discrete optical transformation,” Appl. Phys. Lett. 93(22), 221906 (2008).
[Crossref]

Cummer, S. A.

B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94(24), 244102 (2009).
[Crossref]

S. A. Cummer, N. Kundtz, and B. I. Popa, “Electromagnetic surface and line sources under coordinate transformations,” Phys. Rev. A 80(3), 033820 (2009).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

de Lustrac, A.

P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Ultradirective antenna via transformation optics,” J. Appl. Phys. 105(10), 104912 (2009).
[Crossref]

Gabrielli, L. H.

Gok, G.

G. Gok and A. Grbic, “Alternative material parameters for transformation electromagnetics designs,” IEEE Trans. Microw. Theory Tech. 61(4), 1414–1424 (2013).
[Crossref]

Grbic, A.

G. Gok and A. Grbic, “Alternative material parameters for transformation electromagnetics designs,” IEEE Trans. Microw. Theory Tech. 61(4), 1414–1424 (2013).
[Crossref]

Gregory, M. D.

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Broadband high directivity multibeam emission through transformation optics-enabled metamaterial lenses,” IEEE Trans. Antenn. Propag. 60(11), 5063–5074 (2012).
[Crossref]

Halimeh, J. C.

Hao, Y.

R. Yang, Z. Y. Lei, L. Chen, Z. X. Wang, and Y. Hao, “Surface wave transformation lens antennas,” IEEE Trans. Antenn. Propag. 62(2), 973–977 (2014).
[Crossref]

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hu, G. K.

Hu, J.

Huangfu, J. T.

Y. Luo, J. J. Zhang, H. S. Chen, J. T. Huangfu, and L. X. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007).
[Crossref]

Jiang, W. X.

H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, “Three-dimensional gradient-index materials and their applications in microwave lens antennas,” IEEE Trans. Antenn. Propag. 61(5), 2561–2569 (2013).
[Crossref]

W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, “Layered high-gain lens antennas via discrete optical transformation,” Appl. Phys. Lett. 93(22), 221906 (2008).
[Crossref]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Jiang, Z. H.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
[Crossref]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Broadband high directivity multibeam emission through transformation optics-enabled metamaterial lenses,” IEEE Trans. Antenn. Propag. 60(11), 5063–5074 (2012).
[Crossref]

Johnson, S. G.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kong, F. M.

F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007).
[Crossref]

Kong, J. A.

Y. Luo, J. J. Zhang, L. X. Ran, H. S. Chen, and J. A. Kong, “New concept conformal antennas utilizing metamaterial and transformation optics,” IEEE Antennas Wirel. Propag. Lett. 7, 508–511 (2008).

F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007).
[Crossref]

Kundtz, N.

S. A. Cummer, N. Kundtz, and B. I. Popa, “Electromagnetic surface and line sources under coordinate transformations,” Phys. Rev. A 80(3), 033820 (2009).
[Crossref]

Kwon, D. H.

D. H. Kwon, “Quasi-conformal transformation optics lenses for conformal arrays,” IEEE Antennas Wirel. Propag. Lett. 11, 1125–1128 (2012).
[Crossref]

D. H. Kwon and D. H. Werner, “Transformation electromagnetics: An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
[Crossref]

Lei, Z. Y.

R. Yang, Z. Y. Lei, L. Chen, Z. X. Wang, and Y. Hao, “Surface wave transformation lens antennas,” IEEE Trans. Antenn. Propag. 62(2), 973–977 (2014).
[Crossref]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Li, J.

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Lipson, M.

Liu, D.

Liu, R. P.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Luo, Y.

Y. Luo, J. J. Zhang, H. S. Chen, J. T. Huangfu, and L. X. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

Y. Luo, J. J. Zhang, L. X. Ran, H. S. Chen, and J. A. Kong, “New concept conformal antennas utilizing metamaterial and transformation optics,” IEEE Antennas Wirel. Propag. Lett. 7, 508–511 (2008).

J. J. Zhang, Y. Luo, H. S. Chen, and B. I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express 16(15), 10962–10967 (2008).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, “Three-dimensional gradient-index materials and their applications in microwave lens antennas,” IEEE Trans. Antenn. Propag. 61(5), 2561–2569 (2013).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat Commun 1(8), 124 (2010).
[Crossref] [PubMed]

W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, “Layered high-gain lens antennas via discrete optical transformation,” Appl. Phys. Lett. 93(22), 221906 (2008).
[Crossref]

Mei, Z. L.

Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, “A half maxwell fish-eye lens antenna based on gradient-index metamaterials,” IEEE Trans. Antenn. Propag. 60(1), 398–401 (2012).
[Crossref]

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D Appl. Phys. 43(5), 055404 (2010).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036609 (2005).
[Crossref] [PubMed]

Niu, T. M.

Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, “A half maxwell fish-eye lens antenna based on gradient-index metamaterials,” IEEE Trans. Antenn. Propag. 60(1), 398–401 (2012).
[Crossref]

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Popa, B. I.

B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94(24), 244102 (2009).
[Crossref]

S. A. Cummer, N. Kundtz, and B. I. Popa, “Electromagnetic surface and line sources under coordinate transformations,” Phys. Rev. A 80(3), 033820 (2009).
[Crossref]

Quevedo-Teruel, O.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
[Crossref]

Ran, L. X.

Y. Luo, J. J. Zhang, H. S. Chen, J. T. Huangfu, and L. X. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

Y. Luo, J. J. Zhang, L. X. Ran, H. S. Chen, and J. A. Kong, “New concept conformal antennas utilizing metamaterial and transformation optics,” IEEE Antennas Wirel. Propag. Lett. 7, 508–511 (2008).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Schmied, R.

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036609 (2005).
[Crossref] [PubMed]

Smith, D. R.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036609 (2005).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036609 (2005).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Tang, W. X.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
[Crossref]

Tichit, P. H.

P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Ultradirective antenna via transformation optics,” J. Appl. Phys. 105(10), 104912 (2009).
[Crossref]

Turpin, J. P.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
[Crossref]

Wang, Z. X.

R. Yang, Z. Y. Lei, L. Chen, Z. X. Wang, and Y. Hao, “Surface wave transformation lens antennas,” IEEE Trans. Antenn. Propag. 62(2), 973–977 (2014).
[Crossref]

Wegener, M.

Werner, D. H.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
[Crossref]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Broadband high directivity multibeam emission through transformation optics-enabled metamaterial lenses,” IEEE Trans. Antenn. Propag. 60(11), 5063–5074 (2012).
[Crossref]

D. H. Kwon and D. H. Werner, “Transformation electromagnetics: An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
[Crossref]

Wu, B. I.

Wu, B. I. I.

F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007).
[Crossref]

Wu, Q.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
[Crossref]

Xi, S.

F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007).
[Crossref]

Yahaghi, A.

I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
[Crossref]

Yang, R.

R. Yang, Z. Y. Lei, L. Chen, Z. X. Wang, and Y. Hao, “Surface wave transformation lens antennas,” IEEE Trans. Antenn. Propag. 62(2), 973–977 (2014).
[Crossref]

Yang, X. M.

W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, “Layered high-gain lens antennas via discrete optical transformation,” Appl. Phys. Lett. 93(22), 221906 (2008).
[Crossref]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

Yang, Y.

H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, “Three-dimensional gradient-index materials and their applications in microwave lens antennas,” IEEE Trans. Antenn. Propag. 61(5), 2561–2569 (2013).
[Crossref]

Zhang, J. J.

Y. Luo, J. J. Zhang, H. S. Chen, J. T. Huangfu, and L. X. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

Y. Luo, J. J. Zhang, L. X. Ran, H. S. Chen, and J. A. Kong, “New concept conformal antennas utilizing metamaterial and transformation optics,” IEEE Antennas Wirel. Propag. Lett. 7, 508–511 (2008).

J. J. Zhang, Y. Luo, H. S. Chen, and B. I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express 16(15), 10962–10967 (2008).
[Crossref] [PubMed]

Zhang, T. X.

H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, “Three-dimensional gradient-index materials and their applications in microwave lens antennas,” IEEE Trans. Antenn. Propag. 61(5), 2561–2569 (2013).
[Crossref]

Zhou, X. M.

Appl. Phys. Lett. (7)

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92(26), 264101 (2008).
[Crossref]

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
[Crossref]

F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007).
[Crossref]

W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, “Layered high-gain lens antennas via discrete optical transformation,” Appl. Phys. Lett. 93(22), 221906 (2008).
[Crossref]

Y. Luo, J. J. Zhang, H. S. Chen, J. T. Huangfu, and L. X. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95(19), 193506 (2009).
[Crossref]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94(24), 244102 (2009).
[Crossref]

IEEE Antennas Propag. Mag. (1)

D. H. Kwon and D. H. Werner, “Transformation electromagnetics: An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

D. H. Kwon, “Quasi-conformal transformation optics lenses for conformal arrays,” IEEE Antennas Wirel. Propag. Lett. 11, 1125–1128 (2012).
[Crossref]

Y. Luo, J. J. Zhang, L. X. Ran, H. S. Chen, and J. A. Kong, “New concept conformal antennas utilizing metamaterial and transformation optics,” IEEE Antennas Wirel. Propag. Lett. 7, 508–511 (2008).

IEEE Trans. Antenn. Propag. (6)

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Broadband high directivity multibeam emission through transformation optics-enabled metamaterial lenses,” IEEE Trans. Antenn. Propag. 60(11), 5063–5074 (2012).
[Crossref]

Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, “A half maxwell fish-eye lens antenna based on gradient-index metamaterials,” IEEE Trans. Antenn. Propag. 60(1), 398–401 (2012).
[Crossref]

I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
[Crossref]

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Trans. Antenn. Propag. 61(12), 5910–5922 (2013).
[Crossref]

R. Yang, Z. Y. Lei, L. Chen, Z. X. Wang, and Y. Hao, “Surface wave transformation lens antennas,” IEEE Trans. Antenn. Propag. 62(2), 973–977 (2014).
[Crossref]

H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui, “Three-dimensional gradient-index materials and their applications in microwave lens antennas,” IEEE Trans. Antenn. Propag. 61(5), 2561–2569 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

G. Gok and A. Grbic, “Alternative material parameters for transformation electromagnetics designs,” IEEE Trans. Microw. Theory Tech. 61(4), 1414–1424 (2013).
[Crossref]

J. Appl. Phys. (1)

P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Ultradirective antenna via transformation optics,” J. Appl. Phys. 105(10), 104912 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D Appl. Phys. 43(5), 055404 (2010).
[Crossref]

Nat Commun (1)

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat Commun 1(8), 124 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. A (1)

S. A. Cummer, N. Kundtz, and B. I. Popa, “Electromagnetic surface and line sources under coordinate transformations,” Phys. Rev. A 80(3), 033820 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036609 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Science (3)

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (1)

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Illustration of conformal mapping from the virtual space to the physical space. The grid lines result from Eq. (1) and Eq. (2). A uniform linear array is also transformed to a cylindrical conformal array.
Fig. 2
Fig. 2 (a) Configuration of the conformal lens. (b) and (c) A linear array and a conformal array with PEC reflectors. (d)-(g) The permittivity distributions of the conformal lens in four thickness: 80 mm, 65 mm, 50 mm and 35 mm, sequentially.
Fig. 3
Fig. 3 The electric field (Ez) distribution of a 8-element array at 6 GHz. (a) Linear array. (b) Conformal array without lens. (c) Conformal array with lens (80 mm thick). (d) Conformal array with lens (65 mm thick). (e) Conformal array with lens (50 mm thick). (f) Conformal array with lens (35 mm thick).
Fig. 4
Fig. 4 The far-field radiation patterns of the six cases displayed in Fig. 3.
Fig. 5
Fig. 5 The grid lines of conformal mappings in different thicknesses of the lens. (a) T = 80 mm. (b) T = 65 mm. (c) T = 50 mm. (d) T = 35 mm.
Fig. 6
Fig. 6 (a) Profile of the permittivity for the selected lens. Region Ι and Region ΙI refer to the further simplified lens. (b) Discrete approximation of the simplified lens.
Fig. 7
Fig. 7 (a) Electric field of the conformal array with discrete lens at 6 GHz. (b) The comparison of the radiation patterns among the three configurations.
Fig. 8
Fig. 8 (a) Relationships between the effective permittivity and the holes’ size. The dielectric substrate is PTFE with εr = 2.2. The variable r is the radius of the hole and l is the length of the unit cell. (b) The proposed lens realized by drilling holes in the 2D structure.
Fig. 9
Fig. 9 (a) Electric field of the conformal array with drilling-holes lens in the 2D model at 6 GHz. (b) The comparison of the radiation patterns among the three configurations.
Fig. 10
Fig. 10 (a)-(c) The 3D configurations of the linear array, the conformal array without lens and the conformal array with lens. (d)-(f) The return losses of the dipole antennas in Figs. 10(a)-10(c).
Fig. 11
Fig. 11 Electric field at the H-plane of the 3D model. (a) Linear array. (b) Conformal array without lens. (c) Conformal array with lens.
Fig. 12
Fig. 12 (a)-(b) The far-field radiation pattern of the cases in Fig. 11. (a) E-plane. (b) H-plane. (c)-(e) The 3D pattern. (c) Linear array. (d) Conformal array without lens. (e) Conformal array with lens.
Fig. 13
Fig. 13 (a)-(e) The comparisons of the lens with different heights. (a) E-plane of H = 60 mm. (b) H-plane of H = 60 mm. (c) E-plane of H = 100 mm. (d) H-plane of H = 100 mm. (e) E-plane of H = 120 mm. (f) H-plane of H = 120 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 x ' x 2 + 2 x ' y 2 = 0 , 2 y ' x 2 + 2 y ' y 2 = 0.
x ' | A ' B ' , A ' D ' , B ' C ' = x , n ^ x ' | D ' E ' , E ' F ' , F ' C ' = 0 , y ' | A ' B ' = y , n ^ y ' | A ' D ' , B ' C ' = 0 , y ' | D ' E ' , E ' F ' , F ' C ' = 0 ,
ε = ε r d e t ( J 1 ) , μ = 1
ε e = ε 1 f 1 + ε 2 f 2
ε e = f + ε c ( 1 f )

Metrics