Abstract

Abstract: We demonstrate for the first time in optical fibers the “dispersion of the axes” phenomenon, which relies upon spectral dependence of polarization planes of the guided modes. This feature was achieved in a specially designed side-hole fiber by combining linear birefringence induced by a pair of holes located in the cladding and the elliptical core tilted with respect to the symmetry plane of the holes. We performed numerical simulations of this design properties. The side-hole fiber with a tilted core was fabricated and experimentally studied. The orientation of the principal polarization planes of the fundamental modes varied by 14.5° in the analyzed spectral range. This value is in a good agreement with the simulation results.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly birefringent polymer side-hole fiber for hydrostatic pressure sensing

Tadeusz Martynkien, Grzegorz Wojcik, Pawel Mergo, and Waclaw Urbanczyk
Opt. Lett. 40(13) 3033-3036 (2015)

Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence

A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara, and W. Urbanczyk
Opt. Express 21(10) 12657-12667 (2013)

Dispersion effects in elliptical-core highly birefringent fibers

Waclaw Urbanczyk, Tadeusz Martynkien, and Wojtek J. Bock
Appl. Opt. 40(12) 1911-1920 (2001)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press,1999), p. 792.
  2. N. Hartshorne and A. Stuart, Crystals and the Polarising Microscope: A Handbook for Chemists and Others, 3rd ed. (Edward Arnold Publishers, 1960), p. 136.
  3. W. Lang and R. Claus, “Geometrical dispersion of dielectric and optic axes in a monoclinic crystal,” Phys. Rev. B 26(12), 7119–7122 (1982).
    [Crossref]
  4. F. Giesselmann, A. Langhoff, and P. Zugenmaier, “Dispersion of the optical axes in smectic C* liquid crystals,” Liq. Cryst. 23(6), 927–931 (1997).
    [Crossref]
  5. R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fiber waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
    [Crossref]
  6. M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarisation operation of highly birefringent bow-tie optical fibres,” Electron. Lett. 19(7), 246–247 (1983).
    [Crossref]
  7. H. M. Xie, Ph. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett. 11(5), 333–335 (1986).
    [Crossref] [PubMed]
  8. J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47(3), 805–808 (1998).
    [Crossref]
  9. J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10(6), 857–859 (1998).
    [Crossref]
  10. A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara, and W. Urbanczyk, “Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence,” Opt. Express 21(10), 12657–12667 (2013).
    [Crossref] [PubMed]
  11. W. Urbanczyk, T. Martynkien, and W. J. Bock, “Dispersion effects in elliptical-core highly birefringent fibers,” Appl. Opt. 40(12), 1911–1920 (2001).
    [Crossref] [PubMed]
  12. J. Olszewski, “Birefringence analysis in photonic crystal fibers with germanium-doped core,” J. Opt. A, Pure Appl. Opt. 11(4), 045101 (2009).
    [Crossref]
  13. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986), p. 137.
  14. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).
    [Crossref]
  15. R. Calvani, R. Caponi, and F. Cisternino, “Polarization Measurements on Single-Mode Fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
    [Crossref]

2013 (1)

2009 (1)

J. Olszewski, “Birefringence analysis in photonic crystal fibers with germanium-doped core,” J. Opt. A, Pure Appl. Opt. 11(4), 045101 (2009).
[Crossref]

2004 (1)

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).
[Crossref]

2001 (1)

1998 (2)

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47(3), 805–808 (1998).
[Crossref]

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10(6), 857–859 (1998).
[Crossref]

1997 (1)

F. Giesselmann, A. Langhoff, and P. Zugenmaier, “Dispersion of the optical axes in smectic C* liquid crystals,” Liq. Cryst. 23(6), 927–931 (1997).
[Crossref]

1989 (1)

R. Calvani, R. Caponi, and F. Cisternino, “Polarization Measurements on Single-Mode Fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

1986 (1)

1983 (1)

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarisation operation of highly birefringent bow-tie optical fibres,” Electron. Lett. 19(7), 246–247 (1983).
[Crossref]

1982 (1)

W. Lang and R. Claus, “Geometrical dispersion of dielectric and optic axes in a monoclinic crystal,” Phys. Rev. B 26(12), 7119–7122 (1982).
[Crossref]

1979 (1)

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fiber waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Anuszkiewicz, A.

Birch, R. D.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarisation operation of highly birefringent bow-tie optical fibres,” Electron. Lett. 19(7), 246–247 (1983).
[Crossref]

Bock, W. J.

W. Urbanczyk, T. Martynkien, and W. J. Bock, “Dispersion effects in elliptical-core highly birefringent fibers,” Appl. Opt. 40(12), 1911–1920 (2001).
[Crossref] [PubMed]

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47(3), 805–808 (1998).
[Crossref]

Calvani, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization Measurements on Single-Mode Fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

Caponi, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization Measurements on Single-Mode Fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

Cisternino, F.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization Measurements on Single-Mode Fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

Claus, R.

W. Lang and R. Claus, “Geometrical dispersion of dielectric and optic axes in a monoclinic crystal,” Phys. Rev. B 26(12), 7119–7122 (1982).
[Crossref]

Clowes, J. R.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10(6), 857–859 (1998).
[Crossref]

Cozens, J. R.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fiber waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Dabkiewicz, Ph.

Dyott, R. B.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fiber waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Giesselmann, F.

F. Giesselmann, A. Langhoff, and P. Zugenmaier, “Dispersion of the optical axes in smectic C* liquid crystals,” Liq. Cryst. 23(6), 927–931 (1997).
[Crossref]

Lang, W.

W. Lang and R. Claus, “Geometrical dispersion of dielectric and optic axes in a monoclinic crystal,” Phys. Rev. B 26(12), 7119–7122 (1982).
[Crossref]

Langhoff, A.

F. Giesselmann, A. Langhoff, and P. Zugenmaier, “Dispersion of the optical axes in smectic C* liquid crystals,” Liq. Cryst. 23(6), 927–931 (1997).
[Crossref]

Makara, M.

Martynkien, T.

Mergo, P.

A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara, and W. Urbanczyk, “Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence,” Opt. Express 21(10), 12657–12667 (2013).
[Crossref] [PubMed]

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47(3), 805–808 (1998).
[Crossref]

Morris, D. G.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fiber waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Okamoto, K.

Olszewski, J.

J. Olszewski, “Birefringence analysis in photonic crystal fibers with germanium-doped core,” J. Opt. A, Pure Appl. Opt. 11(4), 045101 (2009).
[Crossref]

Payne, D. N.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarisation operation of highly birefringent bow-tie optical fibres,” Electron. Lett. 19(7), 246–247 (1983).
[Crossref]

Statkiewicz, G.

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).
[Crossref]

Syngellakis, S.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10(6), 857–859 (1998).
[Crossref]

Tarbox, E. J.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarisation operation of highly birefringent bow-tie optical fibres,” Electron. Lett. 19(7), 246–247 (1983).
[Crossref]

Ulrich, R.

Urbanczyk, W.

A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara, and W. Urbanczyk, “Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence,” Opt. Express 21(10), 12657–12667 (2013).
[Crossref] [PubMed]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).
[Crossref]

W. Urbanczyk, T. Martynkien, and W. J. Bock, “Dispersion effects in elliptical-core highly birefringent fibers,” Appl. Opt. 40(12), 1911–1920 (2001).
[Crossref] [PubMed]

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47(3), 805–808 (1998).
[Crossref]

Varnham, M. P.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarisation operation of highly birefringent bow-tie optical fibres,” Electron. Lett. 19(7), 246–247 (1983).
[Crossref]

Wojcik, J.

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47(3), 805–808 (1998).
[Crossref]

Xie, H. M.

Zervas, M. N.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10(6), 857–859 (1998).
[Crossref]

Zugenmaier, P.

F. Giesselmann, A. Langhoff, and P. Zugenmaier, “Dispersion of the optical axes in smectic C* liquid crystals,” Liq. Cryst. 23(6), 927–931 (1997).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (2)

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fiber waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarisation operation of highly birefringent bow-tie optical fibres,” Electron. Lett. 19(7), 246–247 (1983).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10(6), 857–859 (1998).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47(3), 805–808 (1998).
[Crossref]

J. Lightwave Technol. (1)

R. Calvani, R. Caponi, and F. Cisternino, “Polarization Measurements on Single-Mode Fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. Olszewski, “Birefringence analysis in photonic crystal fibers with germanium-doped core,” J. Opt. A, Pure Appl. Opt. 11(4), 045101 (2009).
[Crossref]

Liq. Cryst. (1)

F. Giesselmann, A. Langhoff, and P. Zugenmaier, “Dispersion of the optical axes in smectic C* liquid crystals,” Liq. Cryst. 23(6), 927–931 (1997).
[Crossref]

Opt. Commun. (1)

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4–6), 339–348 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

W. Lang and R. Claus, “Geometrical dispersion of dielectric and optic axes in a monoclinic crystal,” Phys. Rev. B 26(12), 7119–7122 (1982).
[Crossref]

Other (3)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press,1999), p. 792.

N. Hartshorne and A. Stuart, Crystals and the Polarising Microscope: A Handbook for Chemists and Others, 3rd ed. (Edward Arnold Publishers, 1960), p. 136.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986), p. 137.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross-section of the side-hole fiber with tilted elliptical core. (a) Parameters defining the fiber geometry: a and b – major and minor axes of the elliptical core, d – bridge thickness, R – air hole radius, θ – angle between the symmetry plane of the cladding and the core. (b) Blue and red arrows indicate an orientation of the polarization axis of slow mode for short and long wavelength range, respectively, ϕb and ϕr denote angles between the polarization axis and the symmetry axis of the cladding for the corresponding wavelength range.
Fig. 2
Fig. 2 The results of numerical calculations for the fiber parameters presented in Table 1; (a, b) phase birefringence B; (c, d) group birefringence G; (e, f) orientation of polarization axis of slow mode ϕ; (a, c, e) thermal stress is disregarded, (b, d, f) thermal stress is accounted for in the simulations. The vertical dashed lines indicates λB = 0 ≈695 and ≈855 nm respectively for thermal stress disregarded and accounted for. The orientation of polarization planes is wavelength independent for θ = 90° and in this case B can be defined as B = nxny Corresponding curves representing spectral dependence of B and G are plotted with purple dashed lines.
Fig. 3
Fig. 3 (a) SEM image of the fabricated fiber, (b) subdomains of numerical model: white – air, grey – silica, dark grey – doped core, (c, d) normalized field distributions in slow mode; arrows indicate orientation of polarization planes at λ = 500 nm (c) and λ = 900 nm (d).
Fig. 4
Fig. 4 Schematic diagram of the experimental setup for measuring dispersion of polarization axes; SC – supercontinuum source, P – rotatable polarizer, O – microscope objective, A – rotatable analyzer with transmission azimuth perpendicular to the polarizer; length of the fiber used in the experiment was L = 1072 mm.
Fig. 5
Fig. 5 (a) Orientation of the polarizer (P ϕ ) and the analyzer (A ϕ +90°) during measurement of the polarization planes dispersion; λ arrow indicates rotation of the polarization plane against wavelength; P G and A G indicate orientation of the polarization cross during group birefringence measurements. (b) Spectrograms registered at the fiber output using OSA; top (black) line was obtained for the polarizer and the analyzer set respectively at P G and A G (dashed line indicates position of zero group birefringence, λ G = 0); the middle (blue) and bottom (red) spectrograms were obtained for P ϕ and A ϕ +90°; the minimum in fringe contrast is observed for ϕ = 7.5° at 845 nm and for ϕ = 4.5° at 1040 nm (minimum contrast wavelength indicated with dashed line).
Fig. 6
Fig. 6 Comparison of experimental and numerical results for the fabricated fiber: (a) phase and group birefringence, (b) spectral dependence of the polarization plane of the slow mode.
Fig. 7
Fig. 7 Spectral dependence of losses estimated for the fabricated fiber using the finite element method with impedance boundary condition. For wavelength shorter than 850 nm, the obtained values represent numerical noise.

Tables (1)

Tables Icon

Table 1 Geometrical Parameters of the Side-hole Fiber with the Tilted Elliptical Core Used in Numerical Simulations

Metrics