Abstract

We discuss a fiber-integrated refractive index sensor with strongly improved detection performance. The resonator has been implemented by means of focused-ion beam milling of a step index fiber and shows a sensitivity of about 1.15µm/RIU. Coating the resonator walls led to a strongly improved mirror reflectivity by a factor of about 26. Design rules for device optimization and a detailed mathematical analysis are discussed, revealing that the sensor operates as an optimized Fabry-Perot resonator. We also show that the performance of such kind of Fabry-Perot sensors is, in general, limited by the detection limit function – a quantity depending on the cavitiy’s finesse and on the measurement capabilities used.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-integrated refractive index sensor based on a diced Fabry–Perot micro-resonator

Sergiy Suntsov, Christian E. Rüter, Tom Schipkowski, and Detlef Kip
Appl. Opt. 56(33) 9139-9143 (2017)

Dual parameter fiber-integrated sensor for refractive index and temperature measurement based on Fabry–Perot micro-resonators

Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Appl. Opt. 58(8) 2076-2080 (2019)

High-accuracy hybrid fiber-optic Fabry-Pérot sensor based on MEMS for simultaneous gas refractive-index and temperature sensing

Xue Wang, Shuang Wang, Junfeng Jiang, Kun Liu, Peng Zhang, Wen Wu, and Tiegen Liu
Opt. Express 27(4) 4204-4215 (2019)

References

  • View by:
  • |
  • |
  • |

  1. O. Esteban, M. Cruz-Navarrete, A. González-Cano, and E. Bernabeu, “Measurement of the degree of salinity of water with a fiber-optic sensor,” Appl. Opt. 38(25), 5267–5271 (1999).
    [Crossref] [PubMed]
  2. B. Grunwald and G. Holst, “Fibre optic refractive index microsensor based on white-light SPR excitation,” Sens. Actuators A Phys. 113(2), 174–180 (2004).
    [Crossref]
  3. T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
    [Crossref]
  4. S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized Surface Plasmon Resonance-Based Fiber Optic U-Shaped Biosensor for the Detection of Blood Glucose,” Plasmonics 7(2), 261–268 (2012).
    [Crossref]
  5. A. K. Sharma and B. D. Gupta, “Fiber optic sensor based on surface Plasmon resonance with nanoparticle films,” Photon. Nanostructures - Fundamentals and Applications. 3(1), 30–37 (2005).
    [Crossref]
  6. Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer,” Sensors (Basel) 10(4), 3585–3596 (2010).
    [Crossref] [PubMed]
  7. A. Iadicicco, A. Cusano, R. Cutolo, Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
    [Crossref]
  8. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  9. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [Crossref] [PubMed]
  10. M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
    [Crossref]
  11. A. Lim, W. B. Ji, and S. C. Tjin, “Improved Refractive Index Sensitivity Utilizing Long-Period Gratings with Periodic Corrugations on Cladding,” J. Sens. 2012, 1–5 (2012).
    [Crossref]
  12. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  13. K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37(8), 1373–1375 (2012).
    [Crossref] [PubMed]
  14. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
    [Crossref] [PubMed]
  15. W. Xu, X. G. Huang, and J. S. Pan, “Simple Fiber-Optic Refractive Index Sensor Based On Fresnel Reflection and Optical Switch,” IEEE Sens. J. 13(5), 1571–1574 (2013).
    [Crossref]
  16. M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” JEST China 6, 365–368 (2008).
  17. M. Jedrzjewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in Proceedings of the Federated Conference on Computer Science and Information Systems2011, pp. 387–391.
  18. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref] [PubMed]
  19. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref] [PubMed]
  20. E. J. Jung, W.-J. Lee, M. J. Kim, S. H. Hwang, and B. S. Rho, “Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement,” Opt. Eng. 53(1), 017104 (2014).
    [Crossref]
  21. D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett. 36(16), 3148–3150 (2011).
    [Crossref] [PubMed]
  22. C. Wu, Z. Liu, A. P. Zhang, B.-O. Guan, and H.-Y. Tama, “Open cavity Fabry-Pérot interferometric refractometer based on C-shaped fiber,” Proc. SPIE 9157, 1–4 (2014).
  23. M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” in Proceedings of Optical Fiber Sensors Conference APOS ‘08. 1st Asia-Pacific,1–4 (2008)
    [Crossref]
  24. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [Crossref] [PubMed]
  25. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
    [Crossref] [PubMed]
  26. J.-L. Kou, J. Feng, Q.-J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
    [Crossref] [PubMed]
  27. W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
    [Crossref] [PubMed]
  28. L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water Salinity Fiber Sensor with selectable sensitivity using a liquid-fillable composite In-Fiber Fabry-Perot Cavity,” High-Capacity Optical Networks and Enabling Technologies161–165 (2010) (HONET).
  29. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
    [Crossref]
  30. J. M. Vaughan, “The Fabry-Perot Interferometer: History, Theory, Practice and Applications,” (Taylor & Francis Group, 1989).
  31. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [Crossref] [PubMed]
  32. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]
  33. C. L. Mitsas and D. I. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34(10), 1678–1683 (1995).
    [Crossref] [PubMed]
  34. S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: Physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 611–634 (1991).
    [Crossref]
  35. I. Filiński, “The effects of sample imperfections on optical spectra,” Phys. Status Solidi, B Basic Res. 49(2), 577–588 (1972).
    [Crossref]

2014 (2)

E. J. Jung, W.-J. Lee, M. J. Kim, S. H. Hwang, and B. S. Rho, “Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement,” Opt. Eng. 53(1), 017104 (2014).
[Crossref]

C. Wu, Z. Liu, A. P. Zhang, B.-O. Guan, and H.-Y. Tama, “Open cavity Fabry-Pérot interferometric refractometer based on C-shaped fiber,” Proc. SPIE 9157, 1–4 (2014).

2013 (2)

W. Xu, X. G. Huang, and J. S. Pan, “Simple Fiber-Optic Refractive Index Sensor Based On Fresnel Reflection and Optical Switch,” IEEE Sens. J. 13(5), 1571–1574 (2013).
[Crossref]

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

2012 (4)

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized Surface Plasmon Resonance-Based Fiber Optic U-Shaped Biosensor for the Detection of Blood Glucose,” Plasmonics 7(2), 261–268 (2012).
[Crossref]

A. Lim, W. B. Ji, and S. C. Tjin, “Improved Refractive Index Sensitivity Utilizing Long-Period Gratings with Periodic Corrugations on Cladding,” J. Sens. 2012, 1–5 (2012).
[Crossref]

K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37(8), 1373–1375 (2012).
[Crossref] [PubMed]

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

2009 (1)

2008 (4)

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[Crossref] [PubMed]

T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref] [PubMed]

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” JEST China 6, 365–368 (2008).

2007 (2)

2005 (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

A. K. Sharma and B. D. Gupta, “Fiber optic sensor based on surface Plasmon resonance with nanoparticle films,” Photon. Nanostructures - Fundamentals and Applications. 3(1), 30–37 (2005).
[Crossref]

2004 (2)

A. Iadicicco, A. Cusano, R. Cutolo, Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

B. Grunwald and G. Holst, “Fibre optic refractive index microsensor based on white-light SPR excitation,” Sens. Actuators A Phys. 113(2), 174–180 (2004).
[Crossref]

1999 (1)

1995 (1)

1994 (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

1991 (1)

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: Physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 611–634 (1991).
[Crossref]

1984 (1)

1972 (1)

I. Filiński, “The effects of sample imperfections on optical spectra,” Phys. Status Solidi, B Basic Res. 49(2), 577–588 (1972).
[Crossref]

Alameh, K.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water Salinity Fiber Sensor with selectable sensitivity using a liquid-fillable composite In-Fiber Fabry-Perot Cavity,” High-Capacity Optical Networks and Enabling Technologies161–165 (2010) (HONET).

Arora, V.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized Surface Plasmon Resonance-Based Fiber Optic U-Shaped Biosensor for the Detection of Blood Glucose,” Plasmonics 7(2), 261–268 (2012).
[Crossref]

Bang, O.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Bartelt, H.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Bernabeu, E.

Bernini,

A. Iadicicco, A. Cusano, R. Cutolo, Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Bock, W. J.

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Chiang, K. S.

Cruz-Navarrete, M.

Cusano, A.

A. Iadicicco, A. Cusano, R. Cutolo, Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Cutolo, R.

A. Iadicicco, A. Cusano, R. Cutolo, Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Daimon, M.

Dellith, J.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Deng, H. Y.

Deng, M.

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” JEST China 6, 365–368 (2008).

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” in Proceedings of Optical Fiber Sensors Conference APOS ‘08. 1st Asia-Pacific,1–4 (2008)
[Crossref]

Donlagic, D.

Eggleton, B. J.

Esteban, O.

Fang, X.

Feng, J.

Filinski, I.

I. Filiński, “The effects of sample imperfections on optical spectra,” Phys. Status Solidi, B Basic Res. 49(2), 577–588 (1972).
[Crossref]

Fleming, J. W.

Giordano, M.

A. Iadicicco, A. Cusano, R. Cutolo, Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Gnyba, M.

M. Jedrzjewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in Proceedings of the Federated Conference on Computer Science and Information Systems2011, pp. 387–391.

González-Cano, A.

Grunwald, B.

B. Grunwald and G. Holst, “Fibre optic refractive index microsensor based on white-light SPR excitation,” Sens. Actuators A Phys. 113(2), 174–180 (2004).
[Crossref]

Guan, B.-O.

C. Wu, Z. Liu, A. P. Zhang, B.-O. Guan, and H.-Y. Tama, “Open cavity Fabry-Pérot interferometric refractometer based on C-shaped fiber,” Proc. SPIE 9157, 1–4 (2014).

Gupta, B. D.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized Surface Plasmon Resonance-Based Fiber Optic U-Shaped Biosensor for the Detection of Blood Glucose,” Plasmonics 7(2), 261–268 (2012).
[Crossref]

A. K. Sharma and B. D. Gupta, “Fiber optic sensor based on surface Plasmon resonance with nanoparticle films,” Photon. Nanostructures - Fundamentals and Applications. 3(1), 30–37 (2005).
[Crossref]

Han, Y.

Holst, G.

B. Grunwald and G. Holst, “Fibre optic refractive index microsensor based on white-light SPR excitation,” Sens. Actuators A Phys. 113(2), 174–180 (2004).
[Crossref]

Hu, D. J. J.

Hu, T. Y.

Huang, X. G.

W. Xu, X. G. Huang, and J. S. Pan, “Simple Fiber-Optic Refractive Index Sensor Based On Fresnel Reflection and Optical Switch,” IEEE Sens. J. 13(5), 1571–1574 (2013).
[Crossref]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Hwang, S. H.

E. J. Jung, W.-J. Lee, M. J. Kim, S. H. Hwang, and B. S. Rho, “Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement,” Opt. Eng. 53(1), 017104 (2014).
[Crossref]

Iadicicco, A.

A. Iadicicco, A. Cusano, R. Cutolo, Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Ikeuchi, K.

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: Physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 611–634 (1991).
[Crossref]

Jedrzjewska-Szczerska, M.

M. Jedrzjewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in Proceedings of the Federated Conference on Computer Science and Information Systems2011, pp. 387–391.

Ji, W. B.

A. Lim, W. B. Ji, and S. C. Tjin, “Improved Refractive Index Sensitivity Utilizing Long-Period Gratings with Periodic Corrugations on Cladding,” J. Sens. 2012, 1–5 (2012).
[Crossref]

Joly, N. Y.

Jung, E. J.

E. J. Jung, W.-J. Lee, M. J. Kim, S. H. Hwang, and B. S. Rho, “Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement,” Opt. Eng. 53(1), 017104 (2014).
[Crossref]

Kanade, T.

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: Physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 611–634 (1991).
[Crossref]

Kim, M. J.

E. J. Jung, W.-J. Lee, M. J. Kim, S. H. Hwang, and B. S. Rho, “Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement,” Opt. Eng. 53(1), 017104 (2014).
[Crossref]

Kirsch, K.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Korwin-Pawlowski, M. L.

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Kou, J.-L.

Kruczkowski, M.

M. Jedrzjewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in Proceedings of the Federated Conference on Computer Science and Information Systems2011, pp. 387–391.

Kuhlmey, B. T.

Lee, H. W.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lee, W.-J.

E. J. Jung, W.-J. Lee, M. J. Kim, S. H. Hwang, and B. S. Rho, “Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement,” Opt. Eng. 53(1), 017104 (2014).
[Crossref]

Li, H.

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” JEST China 6, 365–368 (2008).

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” in Proceedings of Optical Fiber Sensors Conference APOS ‘08. 1st Asia-Pacific,1–4 (2008)
[Crossref]

Li, Y.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Liao, C. R.

Liao, X.

Lim, A.

A. Lim, W. B. Ji, and S. C. Tjin, “Improved Refractive Index Sensitivity Utilizing Long-Period Gratings with Periodic Corrugations on Cladding,” J. Sens. 2012, 1–5 (2012).
[Crossref]

Lim, J. L.

Liu, W. J.

Liu, Z.

C. Wu, Z. Liu, A. P. Zhang, B.-O. Guan, and H.-Y. Tama, “Open cavity Fabry-Pérot interferometric refractometer based on C-shaped fiber,” Proc. SPIE 9157, 1–4 (2014).

Lu, Y. Q.

Masumura, A.

Milenko, K.

Mitsas, C. L.

Nayar, S. K.

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: Physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 611–634 (1991).
[Crossref]

Nguyen, L. V.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water Salinity Fiber Sensor with selectable sensitivity using a liquid-fillable composite In-Fiber Fabry-Perot Cavity,” High-Capacity Optical Networks and Enabling Technologies161–165 (2010) (HONET).

Pan, J. S.

W. Xu, X. G. Huang, and J. S. Pan, “Simple Fiber-Optic Refractive Index Sensor Based On Fresnel Reflection and Optical Switch,” IEEE Sens. J. 13(5), 1571–1574 (2013).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

Petersen, D. H.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Pickrell, G. R.

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Ran, Z. L.

Rao, Y. J.

Rao, Y.-J.

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” JEST China 6, 365–368 (2008).

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” in Proceedings of Optical Fiber Sensors Conference APOS ‘08. 1st Asia-Pacific,1–4 (2008)
[Crossref]

Rho, B. S.

E. J. Jung, W.-J. Lee, M. J. Kim, S. H. Hwang, and B. S. Rho, “Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement,” Opt. Eng. 53(1), 017104 (2014).
[Crossref]

Russell, P. St. J.

Sapra, S.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized Surface Plasmon Resonance-Based Fiber Optic U-Shaped Biosensor for the Detection of Blood Glucose,” Plasmonics 7(2), 261–268 (2012).
[Crossref]

Savenko, A.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Scharrer, M.

Schmidt, M. A.

Shao, Y.

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer,” Sensors (Basel) 10(4), 3585–3596 (2010).
[Crossref] [PubMed]

Sharma, A. K.

A. K. Sharma and B. D. Gupta, “Fiber optic sensor based on surface Plasmon resonance with nanoparticle films,” Photon. Nanostructures - Fundamentals and Applications. 3(1), 30–37 (2005).
[Crossref]

Shum, P. P.

Siapkas, D. I.

Smietana, M.

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Srivastava, S. K.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized Surface Plasmon Resonance-Based Fiber Optic U-Shaped Biosensor for the Detection of Blood Glucose,” Plasmonics 7(2), 261–268 (2012).
[Crossref]

Szmidt, J.

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Tama, H.-Y.

C. Wu, Z. Liu, A. P. Zhang, B.-O. Guan, and H.-Y. Tama, “Open cavity Fabry-Pérot interferometric refractometer based on C-shaped fiber,” Proc. SPIE 9157, 1–4 (2014).

Tjin, S. C.

A. Lim, W. B. Ji, and S. C. Tjin, “Improved Refractive Index Sensitivity Utilizing Long-Period Gratings with Periodic Corrugations on Cladding,” J. Sens. 2012, 1–5 (2012).
[Crossref]

Tong, W.

Tsai, H.-L.

Tyagi, H.

Uebel, P.

Vasiliev, M.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water Salinity Fiber Sensor with selectable sensitivity using a liquid-fillable composite In-Fiber Fabry-Perot Cavity,” High-Capacity Optical Networks and Enabling Technologies161–165 (2010) (HONET).

Wang, D. N.

Wang, F.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Wang, Q.-J.

Wang, Y.

K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37(8), 1373–1375 (2012).
[Crossref] [PubMed]

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer,” Sensors (Basel) 10(4), 3585–3596 (2010).
[Crossref] [PubMed]

Wei, H.

Wei, T.

Wieduwilt, T.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Willsch, R.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Wolinski, T. R.

Wu, C.

C. Wu, Z. Liu, A. P. Zhang, B.-O. Guan, and H.-Y. Tama, “Open cavity Fabry-Pérot interferometric refractometer based on C-shaped fiber,” Proc. SPIE 9157, 1–4 (2014).

Wu, D. K. C.

Xiao, H.

Xu, F.

Xu, S.

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer,” Sensors (Basel) 10(4), 3585–3596 (2010).
[Crossref] [PubMed]

Xu, W.

W. Xu, X. G. Huang, and J. S. Pan, “Simple Fiber-Optic Refractive Index Sensor Based On Fresnel Reflection and Optical Switch,” IEEE Sens. J. 13(5), 1571–1574 (2013).
[Crossref]

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer,” Sensors (Basel) 10(4), 3585–3596 (2010).
[Crossref] [PubMed]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yuan, W.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Zhang, A. P.

C. Wu, Z. Liu, A. P. Zhang, B.-O. Guan, and H.-Y. Tama, “Open cavity Fabry-Pérot interferometric refractometer based on C-shaped fiber,” Proc. SPIE 9157, 1–4 (2014).

Zhang, T.

Zheng, X.

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer,” Sensors (Basel) 10(4), 3585–3596 (2010).
[Crossref] [PubMed]

Zhu, T.

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” JEST China 6, 365–368 (2008).

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” in Proceedings of Optical Fiber Sensors Conference APOS ‘08. 1st Asia-Pacific,1–4 (2008)
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Iadicicco, A. Cusano, R. Cutolo, Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

IEEE Sens. J. (1)

W. Xu, X. G. Huang, and J. S. Pan, “Simple Fiber-Optic Refractive Index Sensor Based On Fresnel Reflection and Optical Switch,” IEEE Sens. J. 13(5), 1571–1574 (2013).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: Physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 611–634 (1991).
[Crossref]

J. Mod. Opt. (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

J. Sens. (1)

A. Lim, W. B. Ji, and S. C. Tjin, “Improved Refractive Index Sensitivity Utilizing Long-Period Gratings with Periodic Corrugations on Cladding,” J. Sens. 2012, 1–5 (2012).
[Crossref]

JEST China (1)

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” JEST China 6, 365–368 (2008).

Meas. Sci. Technol. (1)

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Opt. Eng. (1)

E. J. Jung, W.-J. Lee, M. J. Kim, S. H. Hwang, and B. S. Rho, “Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement,” Opt. Eng. 53(1), 017104 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Photon. Nanostructures - Fundamentals and Applications. (1)

A. K. Sharma and B. D. Gupta, “Fiber optic sensor based on surface Plasmon resonance with nanoparticle films,” Photon. Nanostructures - Fundamentals and Applications. 3(1), 30–37 (2005).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

I. Filiński, “The effects of sample imperfections on optical spectra,” Phys. Status Solidi, B Basic Res. 49(2), 577–588 (1972).
[Crossref]

Plasmonics (2)

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized Surface Plasmon Resonance-Based Fiber Optic U-Shaped Biosensor for the Detection of Blood Glucose,” Plasmonics 7(2), 261–268 (2012).
[Crossref]

Proc. SPIE (1)

C. Wu, Z. Liu, A. P. Zhang, B.-O. Guan, and H.-Y. Tama, “Open cavity Fabry-Pérot interferometric refractometer based on C-shaped fiber,” Proc. SPIE 9157, 1–4 (2014).

Rev. Sci. Instrum. (1)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

B. Grunwald and G. Holst, “Fibre optic refractive index microsensor based on white-light SPR excitation,” Sens. Actuators A Phys. 113(2), 174–180 (2004).
[Crossref]

Sensors (Basel) (1)

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer,” Sensors (Basel) 10(4), 3585–3596 (2010).
[Crossref] [PubMed]

Other (4)

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water Salinity Fiber Sensor with selectable sensitivity using a liquid-fillable composite In-Fiber Fabry-Perot Cavity,” High-Capacity Optical Networks and Enabling Technologies161–165 (2010) (HONET).

J. M. Vaughan, “The Fabry-Perot Interferometer: History, Theory, Practice and Applications,” (Taylor & Francis Group, 1989).

M. Deng, T. Zhu, Y.-J. Rao, and H. Li, “Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement,” in Proceedings of Optical Fiber Sensors Conference APOS ‘08. 1st Asia-Pacific,1–4 (2008)
[Crossref]

M. Jedrzjewska-Szczerska, M. Gnyba, and M. Kruczkowski, “Low-coherence method of hematocrit measurement,” in Proceedings of the Federated Conference on Computer Science and Information Systems2011, pp. 387–391.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The reflectivity-enhanced in-fiber microresonator for precise refractive index sensing. (a) Schematic of the in-fiber microresonator with the deeply cut slot and the tapered section. (b) Scanning-electron-micrograph of the fabricated fiber resonator (base fiber: SMF-28). (c) One-dimensional transfer-matrix-model of the resonator (green: slot representing the actual sensing area, pink: high-refractive index layers, light blue: silica). The parameters dC and dL indicate the extensions of cavity and layers, nF, nL, and nC the refractive indices of fiber, layer and slot. (d) Extended Fabry-Perot model with cavity extension Δd and additional phase shift Δϕ (color code is identical to that in (c)).
Fig. 2
Fig. 2 Reflection of the reflectivity-enhanced FPR (resonator filled with water) showing the beating between the reflection functions of the HI-layer and of the central slot (green curve: reflection function of entire FPR, purple curve: reflection function of the isolated HI-layer dL = 200 nm, dC = 24.5 µm). The purple dots and dashed lines refer to the position of maximum reflection of the HI-layers calculated using Eq. (2) (numbers on top of the diagram indicate the corresponding mode order). The yellow section indicates the range at which the sensing experiments have been performed (Inset is a close-up of this yellow interval).
Fig. 3
Fig. 3 (a) Example calculation showing the parabolic approximation (using Eq. (5)) of the FP-reflection function in the vicinity of the reflection resonances (Red: reflection function of a FPR calculated using Eq. (3). Blue: parabolic approximations in the vicinity of the resonances (example parameters: R = 0.05, nC = 1 + i0.001, dC = 24.45 µm)). (b) Normalized detection limit factor as a function of single mirror reflectivity. The inset shows the general definition of the smallest measureable wavelength shift.
Fig. 4
Fig. 4 Detection limit factor as function of fringe reflectivity difference for a fixed value of resonator loss (ϕI = 0.01). Upper right-handed inset: single mirror reflectivity versus ΔRF. Lower left-handed inset: Dependence of DN on ϕI for two different single mirror reflectivities R.
Fig. 5
Fig. 5 Minimum resolvable refractive index change as function of SNR. Inset: ΔRmin as a function of SNR.
Fig. 6
Fig. 6 Scanning-electron micrograph of the focused-ion-beam milled and refined fiber-based micro-cavity (side view). The dashed yellow line represents the section of the guiding core.
Fig. 7
Fig. 7 Scheme of the setup to measure the optical response of the sensor (SC: supercontinuum light source, OSA: optical spectrum analyzer, C: fiber coupler, IMF: index matching fluid, FPR: Fabry-Perot-Resonator).
Fig. 8
Fig. 8 Spectral response of the fiber-integrated FPR in reflection mode when exposed to water (single mode operation range 1.45 µm to 1.75 µm). The green curve refers to the experimentally measured data, the purple one to the results of the transfer-matrix simulations. The green numbers indicate the respective mode order m, the arrows point the minimum at which the detection limit factor has been exemplarily calculated. The grey arrow refers to the definition of the fringe reflectivity difference ΔRF.
Fig. 9
Fig. 9 Measured spectral distribution of the reflectivity (normalized) of our FPR in the case of a water-filled slot. (a) comparison two resonators (w: with HfO2 layer (blue curve), w/o: without HfO2 layer (red curve), OSA resolution 1 nm) (b) Close-ups of the interference peaks and valleys (sensor probe includes hafnium oxide layer (OSA resolution 0.1 nm).
Fig. 10
Fig. 10 Distribution of the measurement reflection resonances as a function of mode order of the fiber-integrated FPR. Inset: derivations of the different models from the experimental data. (Purple triangles: transfer matrix method, red triangles: extended FP model, blue squares: regular FP model).
Fig. 11
Fig. 11 Comparison of the sensitivities calculated using the different models together with the experimentally determined values for SFP (green circles: experimental data, purple triangles: transfer matrix method, red triangles: extended FP model, blue squares: regular FP model). The inset shows linear fits to the experimentally measured resonances for different mode orders (numbers and colors refer to the different orders of modes).
Fig. 12
Fig. 12 Dependence of reflection and transmission amplitude reduction factor on rms roughness amplitude (λ0 = 1.55 µm) for the silica/HfO2 interface. The black dashed line corresponds to the optimum value of a = 0.75 and b = 0.995 obtained from fitting the experimental data to the TMM. The inset shows the spectral dependence of a and b for σ = 48 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ϕ C = ϕ R + i ϕ I = n C k 0 d C
d L,opt = 1 + 2 m L 4 n L λ P
R FP = R 1 2 cos ( 2 ϕ R ) exp ( 2 ϕ I ) + exp ( 4 ϕ I ) 1 2 R cos ( 2 ϕ R ) e x p ( 2 ϕ I ) + R 2 e x p ( 4 ϕ I )
π m + Δ ϕ = n C k 0 ( d C + 2 Δ d )
R FP approx . 4 R ( R 1 ) 2 ( π m ϕ R ) 2 + R ( exp ( 2 ϕ I ) 1 R exp ( 2 ϕ I ) 1 ) 2
D = Δ λ min λ R = Δ n min n C = Δ R min 1 2 m F = Δ R min m D N
r = a n R n L n R + n L
t = b 2 n R n R + n L
a = exp [ 2 ( n R k 0 σ ) 2 ]
b = exp { 1 2 [ ( n R n L ) k 0 σ ] 2 }

Metrics