Abstract

A Nd:YLF laser at cryogenic temperature is demonstrated for the first time with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm. By exploring the temperature dependence of the fluorescence and the absorption spectra from the Nd:YLF crystal, the feasibility of simultaneous emission at low temperature is achieved. Due to the local heating from the pump absorption, the optimal temperature with respect to the pump power for balancing output powers of simultaneous emission is thoroughly explored. At the optimal temperature of 138 K, the total output power of the simultaneous emission can reach 3.1 W at an incident pump power of 7.9 W, corresponding to the optical to optical slope efficiency up to 43%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Power scaling of an actively Q-switched orthogonally polarized dual-wavelength Nd:YLF laser at 1047 and 1053  nm

Zhi-Yu Zuo, Shi-Bo Dai, Si-Qi Zhu, Hao Yin, Zhen Li, and Zhen-Qiang Chen
Opt. Lett. 43(19) 4578-4581 (2018)

Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen
Opt. Express 20(16) 18230-18237 (2012)

Synchronized self-mode-locked 1061-nm and 1064-nm monolithic Nd:YAG laser at cryogenic temperatures with two orthogonally polarized emissions: generation of 670 GHz beating

T. L. Huang, C. L. Sung, H. P. Cheng, C. Y. Cho, H. C. Liang, K. W. Su, K. F. Huang, and Y. F. Chen
Opt. Express 24(19) 22189-22197 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Weigl, “A generalized technique of two-wavelength, nondiffuse holographic interferometry,” Appl. Opt. 10(1), 187–192 (1971).
    [Crossref] [PubMed]
  2. R. W. Farley and P. D. Dao, “Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system,” Appl. Opt. 34(21), 4269–4273 (1995).
    [Crossref] [PubMed]
  3. H. Y. Shen and H. Su, “Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals,” J. Appl. Phys. 86(12), 6647–6651 (1999).
    [Crossref]
  4. I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29(9), 1306 (2002).
    [Crossref]
  5. T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18(2), 159–163 (1982).
    [Crossref]
  6. J. E. Murray, “Pulsed gain and thermal lensing of Nd:LiYF4,” IEEE J. Quantum Electron. 19(4), 488–491 (1983).
    [Crossref]
  7. S. L. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18(5), 38–43 (2007).
    [Crossref]
  8. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
    [Crossref]
  9. J. M. Auerbach and R. L. Schmitt, “Diode-laser-pumped monolithic Nd:YLF laser operating at 1053 µm,” Opt. Lett. 16(15), 1171–1173 (1991).
    [Crossref] [PubMed]
  10. Y. Sun, H. Zhang, Q. Liu, L. Huang, Y. Wang, and M. Gong, “High pulse repetition frequency all-solid-state 1053 nm Nd:YLF laser,” Laser Phys. Lett. 7(10), 722–725 (2010).
    [Crossref]
  11. B. Frei and J. E. Balmer, “1053-nm-wavelength selection in a diode-laser-pumped Nd:YLF laser,” Appl. Opt. 33(30), 6942–6946 (1994).
    [Crossref] [PubMed]
  12. Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B 108(2), 313–317 (2012).
    [Crossref]
  13. C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
    [Crossref] [PubMed]
  14. A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30(6), 1483–1491 (1969).
    [Crossref]
  15. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
    [Crossref]
  16. C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
    [Crossref]
  17. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
    [Crossref] [PubMed]
  18. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  19. J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).
  20. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
    [Crossref] [PubMed]
  21. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  22. D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications,” Opt. Mater. Express 1(3), 434–450 (2011).
    [Crossref]
  23. S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
[Crossref] [PubMed]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

2012 (1)

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B 108(2), 313–317 (2012).
[Crossref]

2011 (1)

2010 (3)

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref] [PubMed]

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Y. Sun, H. Zhang, Q. Liu, L. Huang, Y. Wang, and M. Gong, “High pulse repetition frequency all-solid-state 1053 nm Nd:YLF laser,” Laser Phys. Lett. 7(10), 722–725 (2010).
[Crossref]

2007 (2)

S. L. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18(5), 38–43 (2007).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2005 (3)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

2004 (1)

2002 (1)

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29(9), 1306 (2002).
[Crossref]

1999 (1)

H. Y. Shen and H. Su, “Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals,” J. Appl. Phys. 86(12), 6647–6651 (1999).
[Crossref]

1995 (1)

1994 (1)

1991 (1)

1983 (1)

J. E. Murray, “Pulsed gain and thermal lensing of Nd:LiYF4,” IEEE J. Quantum Electron. 19(4), 488–491 (1983).
[Crossref]

1982 (1)

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18(2), 159–163 (1982).
[Crossref]

1971 (1)

1969 (1)

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30(6), 1483–1491 (1969).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[Crossref] [PubMed]

Althausen, D.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29(9), 1306 (2002).
[Crossref]

Ansmann, A.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29(9), 1306 (2002).
[Crossref]

Auerbach, J. M.

Balmer, J. E.

Bass, M.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Bosch, T.

S. L. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18(5), 38–43 (2007).
[Crossref]

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chen, Y. C.

Chen, Y. F.

C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
[Crossref] [PubMed]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B 108(2), 313–317 (2012).
[Crossref]

Chicklis, E. P.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18(2), 159–163 (1982).
[Crossref]

Cho, C. Y.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
[Crossref] [PubMed]

Dao, P. D.

Dong, J.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Fan, T. Y.

Farley, R. W.

Frei, B.

Fujita, M.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Gabbe, D. R.

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30(6), 1483–1491 (1969).
[Crossref]

Gong, M.

Y. Sun, H. Zhang, Q. Liu, L. Huang, Y. Wang, and M. Gong, “High pulse repetition frequency all-solid-state 1053 nm Nd:YLF laser,” Laser Phys. Lett. 7(10), 722–725 (2010).
[Crossref]

Grasso, R. J.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18(2), 159–163 (1982).
[Crossref]

Harmer, A. L.

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30(6), 1483–1491 (1969).
[Crossref]

Huang, K. F.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Huang, L.

Y. Sun, H. Zhang, Q. Liu, L. Huang, Y. Wang, and M. Gong, “High pulse repetition frequency all-solid-state 1053 nm Nd:YLF laser,” Laser Phys. Lett. 7(10), 722–725 (2010).
[Crossref]

Huang, S. C.

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B 108(2), 313–317 (2012).
[Crossref]

Huang, Y. J.

C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
[Crossref] [PubMed]

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B 108(2), 313–317 (2012).
[Crossref]

Huang, Y. P.

C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
[Crossref] [PubMed]

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B 108(2), 313–317 (2012).
[Crossref]

Izawa, Y.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Jenssen, H. P.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18(2), 159–163 (1982).
[Crossref]

Kawanaka, J.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Lee, W. L.

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B 108(2), 313–317 (2012).
[Crossref]

Li, Y.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Linz, A.

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30(6), 1483–1491 (1969).
[Crossref]

Liu, Q.

Y. Sun, H. Zhang, Q. Liu, L. Huang, Y. Wang, and M. Gong, “High pulse repetition frequency all-solid-state 1053 nm Nd:YLF laser,” Laser Phys. Lett. 7(10), 722–725 (2010).
[Crossref]

Mackenzie, J. I.

Mattis, I.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29(9), 1306 (2002).
[Crossref]

Miller, D.

Muller, D.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29(9), 1306 (2002).
[Crossref]

Murray, J. E.

J. E. Murray, “Pulsed gain and thermal lensing of Nd:LiYF4,” IEEE J. Quantum Electron. 19(4), 488–491 (1983).
[Crossref]

Nishioka, H.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[Crossref] [PubMed]

Pollak, T. M.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18(2), 159–163 (1982).
[Crossref]

Rand, D.

Rapaport, A.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Ripin, D. J.

Schmitt, R. L.

Shen, H. Y.

H. Y. Shen and H. Su, “Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals,” J. Appl. Phys. 86(12), 6647–6651 (1999).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Su, H.

H. Y. Shen and H. Su, “Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals,” J. Appl. Phys. 86(12), 6647–6651 (1999).
[Crossref]

Su, K. W.

Sun, Y.

Y. Sun, H. Zhang, Q. Liu, L. Huang, Y. Wang, and M. Gong, “High pulse repetition frequency all-solid-state 1053 nm Nd:YLF laser,” Laser Phys. Lett. 7(10), 722–725 (2010).
[Crossref]

Szipocs, F.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Tan, Y. D.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Tang, C. Y.

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B 108(2), 313–317 (2012).
[Crossref]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Tokita, S.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Tuan, P. H.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Ueda, K.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Wandinger, U.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29(9), 1306 (2002).
[Crossref]

Wang, Y.

Y. Sun, H. Zhang, Q. Liu, L. Huang, Y. Wang, and M. Gong, “High pulse repetition frequency all-solid-state 1053 nm Nd:YLF laser,” Laser Phys. Lett. 7(10), 722–725 (2010).
[Crossref]

Weigl, F.

Wing, W. F.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18(2), 159–163 (1982).
[Crossref]

Yamakawa, K.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Yoon, S. J.

Yu, Y. T.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Zapata, L. E.

Zhang, H.

Y. Sun, H. Zhang, Q. Liu, L. Huang, Y. Wang, and M. Gong, “High pulse repetition frequency all-solid-state 1053 nm Nd:YLF laser,” Laser Phys. Lett. 7(10), 722–725 (2010).
[Crossref]

Zhang, S. L.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

S. L. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18(5), 38–43 (2007).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B 108(2), 313–317 (2012).
[Crossref]

Geophys. Res. Lett. (1)

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29(9), 1306 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18(2), 159–163 (1982).
[Crossref]

J. E. Murray, “Pulsed gain and thermal lensing of Nd:LiYF4,” IEEE J. Quantum Electron. 19(4), 488–491 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

J. Appl. Phys. (1)

H. Y. Shen and H. Su, “Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals,” J. Appl. Phys. 86(12), 6647–6651 (1999).
[Crossref]

J. Phys. Chem. Solids (1)

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30(6), 1483–1491 (1969).
[Crossref]

Laser Phys. (1)

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Laser Phys. Lett. (2)

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Y. Sun, H. Zhang, Q. Liu, L. Huang, Y. Wang, and M. Gong, “High pulse repetition frequency all-solid-state 1053 nm Nd:YLF laser,” Laser Phys. Lett. 7(10), 722–725 (2010).
[Crossref]

Meas. Sci. Technol. (1)

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. Express (1)

Opt. Photon. News (1)

S. L. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18(5), 38–43 (2007).
[Crossref]

Phys. Status Solidi (1)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi 202(13), 2565–2573 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for the simultaneous orthogonally polarized Nd:YLF laser at cryogenic temperature.
Fig. 2
Fig. 2 The temperature dependence of the fluorescence spectra on two polarizations from the Nd:YLF crystal and the comparison between the absorption coefficient as well as the normalized pump spectrum at 290 K, 210 K, 170 K and 110 K.
Fig. 3
Fig. 3 Total output powers of the cryogenic Nd:YLF laser with respect to the incident pump power at different temperature.
Fig. 4
Fig. 4 Output powers of the Nd:YLF laser at 1047 nm and 1053 nm with respect to the temperature at incident powers of (a) 7.9 W, (b) 4.6 W and (c) 2.9 W.
Fig. 5
Fig. 5 (a) Stimulated emission spectra of the cryogenic Nd:YLF laser at the incident pump power of 7.9 W with cooling temperatures of 160 K, 140 K, 138 K, 136 K and 125 K. (b) The temporal dynamics of the cryogenic Nd:YLF laser at 1047 nm and 1053 nm with the optimal temperature and the incident pump power of 7.9 W.
Fig. 6
Fig. 6 Experimental results of the optimal temperature for balancing output powers of two emission wavelengths for the orthogonally polarized Nd:YLF laser with respect to the pump intensity and the linear fitting curve of the experimental data. The inset: Transverse distribution of the dual-polarization Nd:YLF laser at the optimal temperature and the pump power of 7.9 W for (a) 1047 nm and (b) 1053 nm.

Metrics