Abstract

Semiconductor and metallic nanowires are attractive building blocks for a nanoscale integrated photonic platform. The scattering coefficients of the optical or plasmonic waveguide mode by 3-dimensional nanowire abrupt discontinuities including splices and endfaces are important figures of merit for realistic estimation of the coupling, lasing, or sensing performance. To tackle with such computationally challenging problems, we derive simple closed-form expressions based on linear equations and overlap integrals of normal modes to realize domain reduction and efficient analytical modeling. For the reflection coefficients at nanowire/waveguide endfaces, the analytical expressions incorporating all the bound modes and a few dozen leaky modes are highly accurate; whereas for the transmission coefficients at nanowire/waveguide splices, the model can be further simplified because only the input and the interested output bound modes need to be considered. Exhaustive validations using fully-vectorial simulation results as reference data show that the model is accurate and versatile for fundamental and high-order TE or TM modes, and for various architectures including high-index-contrast dielectric and plasmonic configurations, 3-D geometries or 2-D equivalents, and various operating wavelengths from ultraviolet to visible and the optical telecommunication bands in the infrared. Our model will facilitate the structure design and theoretical investigation of nanowire/waveguide photonic devices, especially lasers, resonators, sensors and couplers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fourier finite element modeling of light emission in waveguides: 2.5-dimensional FEM approach

Yangxin Ou, David Pardo, and Yuntian Chen
Opt. Express 23(23) 30259-30269 (2015)

Closed-form expressions to fit data obtained with a multipass Fabry–Perot interferometer

Hacène Boukari, E. D. Palik, and Robert W. Gammon
Appl. Opt. 34(1) 69-86 (1995)

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
    [Crossref]
  2. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [Crossref]
  3. H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1(2), 155–169 (2012).
    [Crossref]
  4. X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
    [Crossref]
  5. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
    [Crossref]
  6. D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
    [Crossref] [PubMed]
  7. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [Crossref] [PubMed]
  8. P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
    [Crossref]
  9. M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
    [Crossref]
  10. S. Arafin, X. Liu, and Z. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophoton. 7(1), 074599 (2013).
    [Crossref]
  11. X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
    [Crossref] [PubMed]
  12. Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
    [Crossref] [PubMed]
  13. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  15. V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
    [Crossref] [PubMed]
  16. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
    [Crossref] [PubMed]
  17. Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5(3), 216–273 (2013).
    [Crossref]
  18. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
    [Crossref] [PubMed]
  19. A.-L. Henneghien, B. Gayral, Y. Désières, and J.-M. Gérard, “Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections,” J. Opt. Soc. Am. B 26(12), 2396–2403 (2009).
    [Crossref]
  20. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
    [Crossref]
  21. S. Wang, Z. Hu, H. Yu, W. Fang, M. Qiu, and L. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
    [Crossref] [PubMed]
  22. X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
    [Crossref] [PubMed]
  23. Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
    [Crossref] [PubMed]
  24. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
    [Crossref] [PubMed]
  25. Q. Li, G. T. Wang, J. Wright, H. Xu, T.-S. Luk, I. Brener, J. Figiel, K. Cross, M. H. Crawford, S. R. Lee, and D. D. Koleske, “Nanofabrication of tunable nanowire lasers via electron and ion-beam based techniques,” (Sandia National Laboratories, Albuquerque, New Mexico and Livermore, California, 2012).
  26. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
    [Crossref] [PubMed]
  27. X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
    [Crossref]
  28. G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18(10), 10487–10499 (2010).
    [Crossref] [PubMed]
  29. C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).
  30. J. Li and N. Engheta, “Subwavelength plasmonic cavity resonator on a nanowire with periodic permittivity variation,” Phys. Rev. B 74(11), 115125 (2006).
    [Crossref]
  31. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15(18), 11042–11060 (2007).
    [Crossref] [PubMed]
  32. W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98(11), 111107 (2011).
    [Crossref]
  33. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  34. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  35. P. Bienstman, “Rigorous and efficient modeling of wavelength scale photonic components,” (Gent University PhD thesis in English, 2001).
  36. E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18(11), 2865–2875 (2001).
    [Crossref] [PubMed]
  37. J. P. Hugonin, P. Lalanne, I. D. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37(1-3), 107–119 (2005).
    [Crossref]
  38. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22(9), 1844–1849 (2005).
    [Crossref] [PubMed]
  39. G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
    [Crossref]
  40. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, 2007).
  41. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  42. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.
  43. M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
    [Crossref] [PubMed]
  44. Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
    [Crossref] [PubMed]

2014 (1)

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

2013 (6)

S. Arafin, X. Liu, and Z. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophoton. 7(1), 074599 (2013).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5(3), 216–273 (2013).
[Crossref]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref] [PubMed]

2012 (5)

Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1(2), 155–169 (2012).
[Crossref]

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

2011 (3)

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98(11), 111107 (2011).
[Crossref]

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

2010 (2)

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18(10), 10487–10499 (2010).
[Crossref] [PubMed]

2009 (6)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[Crossref] [PubMed]

S. Wang, Z. Hu, H. Yu, W. Fang, M. Qiu, and L. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

A.-L. Henneghien, B. Gayral, Y. Désières, and J.-M. Gérard, “Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections,” J. Opt. Soc. Am. B 26(12), 2396–2403 (2009).
[Crossref]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (1)

2006 (3)

J. Li and N. Engheta, “Subwavelength plasmonic cavity resonator on a nanowire with periodic permittivity variation,” Phys. Rev. B 74(11), 115125 (2006).
[Crossref]

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[Crossref]

2005 (4)

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[Crossref] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

J. P. Hugonin, P. Lalanne, I. D. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37(1-3), 107–119 (2005).
[Crossref]

J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22(9), 1844–1849 (2005).
[Crossref] [PubMed]

2003 (2)

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

2002 (1)

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

2001 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Adibi, A.

Akimov, A. V.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Alameh, K.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

Arafin, S.

S. Arafin, X. Liu, and Z. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophoton. 7(1), 074599 (2013).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Bao, J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Borschel, C.

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

Cai, L.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18(10), 10487–10499 (2010).
[Crossref] [PubMed]

Cao, Q.

Capasso, F.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Chamanzar, M.

Chang, W.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Chen, H.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Chen, L.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Choi, H.-J.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cubukcu, E.

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

Dabidian, N.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Dai, L.

Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5(3), 216–273 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

de Leon, N. P.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Désières, Y.

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Engheta, N.

J. Li and N. Engheta, “Subwavelength plasmonic cavity resonator on a nanowire with periodic permittivity variation,” Phys. Rev. B 74(11), 115125 (2006).
[Crossref]

Englund, D. E.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Fan, R.-H.

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Fang, N. X.

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Fang, W.

Fang, Y.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[Crossref] [PubMed]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Gayral, B.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gérard, J.-M.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gnauck, M.

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

Gong, Q.

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

Gu, Y.

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

Guo, G.-C.

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Guo, X.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5(3), 216–273 (2013).
[Crossref]

Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
[Crossref] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Gwo, S.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Hao, F.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[Crossref] [PubMed]

Henneghien, A.-L.

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Hu, Q.

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Hu, Z.

Huang, X.-R.

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Hugonin, J. P.

Hugonin, J.-P.

Johnson, J. C.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kim, J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Knutsen, K. P.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Kolchin, P.

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Lalanne, P.

W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98(11), 111107 (2011).
[Crossref]

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15(18), 11042–11060 (2007).
[Crossref] [PubMed]

J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22(9), 1844–1849 (2005).
[Crossref] [PubMed]

J. P. Hugonin, P. Lalanne, I. D. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37(1-3), 107–119 (2005).
[Crossref]

E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18(11), 2865–2875 (2001).
[Crossref] [PubMed]

Law, M.

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[Crossref] [PubMed]

Lecamp, G.

Lederer, F.

W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98(11), 111107 (2011).
[Crossref]

Li, B.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Li, G.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18(10), 10487–10499 (2010).
[Crossref] [PubMed]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.

Li, J.

J. Li and N. Engheta, “Subwavelength plasmonic cavity resonator on a nanowire with periodic permittivity variation,” Phys. Rev. B 74(11), 115125 (2006).
[Crossref]

Li, Y.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.

Lieber, C. M.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.

Liu, A.-P.

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Liu, X.

S. Arafin, X. Liu, and Z. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophoton. 7(1), 074599 (2013).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.

Lu, M.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Lu, Y.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Lukin, M. D.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Luo, R.

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Ma, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5(3), 216–273 (2013).
[Crossref]

Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
[Crossref] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Ma, Z.

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

Maslov, A. V.

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

Matias, I. R.

J. P. Hugonin, P. Lalanne, I. D. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37(1-3), 107–119 (2005).
[Crossref]

Meng, C.

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

Mi, Z.

S. Arafin, X. Liu, and Z. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophoton. 7(1), 074599 (2013).
[Crossref]

Müller, S.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Ning, C. Z.

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

Nordlander, P.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[Crossref] [PubMed]

Oulton, R. F.

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Park, H.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Paul, T.

W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98(11), 111107 (2011).
[Crossref]

Pauzauskie, P. J.

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[Crossref]

Pei, Y.

Peng, R.-W.

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Pholchai, N.

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Qian, F.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.

Qiu, M.

S. Wang, Z. Hu, H. Yu, W. Fang, M. Qiu, and L. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Qiu, X.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Ren, X.-F.

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Rockstuhl, C.

W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98(11), 111107 (2011).
[Crossref]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Ronning, C.

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Sanders, C. E.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Saykally, R. J.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Schaller, R. D.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Shields, B. J.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Shih, C.-K.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Shvets, G.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Silberstein, E.

Sirbuly, D. J.

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[Crossref] [PubMed]

Smigaj, W.

W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98(11), 111107 (2011).
[Crossref]

Sorger, V. J.

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Sum, T. C.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.

Sun, F.-W.

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Tong, L.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5(3), 216–273 (2013).
[Crossref]

Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
[Crossref] [PubMed]

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

S. Wang, Z. Hu, H. Yu, W. Fang, M. Qiu, and L. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

Villar, I. D.

J. P. Hugonin, P. Lalanne, I. D. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37(1-3), 107–119 (2005).
[Crossref]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Wang, C.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Wang, M.

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Wang, Q.-J.

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Wang, S.

Wang, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
[Crossref] [PubMed]

Wei, H.

H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1(2), 155–169 (2012).
[Crossref]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[Crossref] [PubMed]

Wiley, B. J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Wu, C.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Wu, X.

Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photon. 5(3), 216–273 (2013).
[Crossref]

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

Xia, Z.

Xiang, J.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Xiao, F.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18(10), 10487–10499 (2010).
[Crossref] [PubMed]

Xiong, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.

Xiong, X.

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Xu, A.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18(10), 10487–10499 (2010).
[Crossref] [PubMed]

Xu, D.-H.

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Xu, H.

H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1(2), 155–169 (2012).
[Crossref]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[Crossref] [PubMed]

Yan, H.

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yang, J.

W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98(11), 111107 (2011).
[Crossref]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[Crossref]

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Yang, Q.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Ye, Y.-X.

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Yegnanarayanan, S.

Ying, Y.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

Yu, C. L.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Yu, H.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

S. Wang, Z. Hu, H. Yu, W. Fang, M. Qiu, and L. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.

Zhang, X.

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhou, Y.

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Zimmler, M. A.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Zou, C.-L.

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Acc. Chem. Res. (1)

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98(11), 111107 (2011).
[Crossref]

J. Nanophoton. (1)

S. Arafin, X. Liu, and Z. Mi, “Review of recent progress of III-nitride nanowire lasers,” J. Nanophoton. 7(1), 074599 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[Crossref] [PubMed]

Laser Photon. Rev. (2)

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

Mater. Today (2)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[Crossref]

Nano Lett. (3)

V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011).
[Crossref] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref] [PubMed]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[Crossref] [PubMed]

Nanophotonics (1)

H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1(2), 155–169 (2012).
[Crossref]

Nanotechnology (1)

X. Zhang, Z. Ma, R. Luo, Y. Gu, C. Meng, X. Wu, Q. Gong, and L. Tong, “Single-nanowire surface plasmon gratings,” Nanotechnology 23(22), 225202 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

Opt. Express (5)

Opt. Quantum Electron. (1)

J. P. Hugonin, P. Lalanne, I. D. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37(1-3), 107–119 (2005).
[Crossref]

Phys. Rev. B (2)

J. Li and N. Engheta, “Subwavelength plasmonic cavity resonator on a nanowire with periodic permittivity variation,” Phys. Rev. B 74(11), 115125 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

Q. Hu, D.-H. Xu, Y. Zhou, R.-W. Peng, R.-H. Fan, N. X. Fang, Q.-J. Wang, X.-R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Science (1)

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Other (7)

Q. Li, G. T. Wang, J. Wright, H. Xu, T.-S. Luk, I. Brener, J. Figiel, K. Cross, M. H. Crawford, S. R. Lee, and D. D. Koleske, “Nanofabrication of tunable nanowire lasers via electron and ion-beam based techniques,” (Sandia National Laboratories, Albuquerque, New Mexico and Livermore, California, 2012).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

P. Bienstman, “Rigorous and efficient modeling of wavelength scale photonic components,” (Gent University PhD thesis in English, 2001).

C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, 2007).

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room-temperature low-threshold ultra-violet plasmonic nanolaser,” Nat. Commun.In press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of (a) a nanowire F-P cavity formed by endface reflection, (b)-(c) the reflection and transmission of waveguide modes supported by a nanowire at (b) milled gratings or (c) a splice.
Fig. 2
Fig. 2 (a) Schematics of the theoretical modeling. (b)-(f) Five typical examples used to validate the theory: 2-D (b) transmission and (c) radiation problems for the high-index-contrast dielectric waveguide; (d) a 2-D radiation problem of hybrid plasmonic mode in the metal-insulator-semiconductor (MIS) configuration; 3-D radiation problems of a nanowire (e) of circular cross section (with radius R) and vertically sitting on silica substrate or (f) of triangular cross section (with edge length L) and horizontally lying on silica substrate.
Fig. 3
Fig. 3 Comparison of aFMM pure simulated results (black lines) and model predictions (symbols) for the scattering problem illustrated by Fig. 2(b) with the fundamental TE mode incidence: (a) |r11|, (b) |t11|, (c) arg(r11), and (d) arg(t11). 'o' is for model without leaky modes, 'x' for model with 'leaky 1', ' + ' for model with 'leaky 3′, and '□' for model using only the interested incident and transmitted modes. The missing points at Δ = 0 μm in (a) and (d) are due to |r11| = 0 and arg(t11) = 0, respectively. The calculations were performed with h = 0.8 μm, nS = 3.45, nsub = 1.5, and λ = 1.2 μm.
Fig. 4
Fig. 4 Comparison of aFMM pure simulated results (black lines) and model predictions (symbols) for the scattering problem illustrated by Fig. 2(b) with the 2nd-order TE mode incidence: |r21|, |r22|, |r23|, |t21|, |t22|, and |t23|. The missing points at Δ = 0 μm in (a)–(c) are corresponding to |r22| = 0, |r21| = 0, and |r23| = 0, respectively. The calculations were performed with the same parameters as Fig. 3 except for p = 2.
Fig. 5
Fig. 5 Comparison of aFMM pure calculated results (black lines) and model predictions (symbols) for the radiation problem in Fig. 2(c) with the fundamental TE mode incidence: (a) |r11| and (b) arg(r11), and for the radiation problem in Fig. 2(d) with the hybrid plasmonic (TM) mode incidence: (c) |r11| and (d) arg(r11). The calculations for (a)–(b) were performed with the same parameters as Fig. 3, and those for (c)–(d) were performed with nM = 0.0157 + 3.0848i (Ag) [41], nI = 1.38 (MgF2), nS = 2.5 (CdS), hI = 10 nm, and λ = 0.5 μm.
Fig. 6
Fig. 6 Comparison of aFMM pure calculated results (black lines) and model predictions (symbols) on reflection coefficients at semiconductor nanowire endfaces: (a) and (b) are for the scattering problem illustrated by Fig. 2(e), and (c) and (d) are for the scattering problem in Fig. 2(f); (a) and (c) are for the fundamental HE11 modes, and (b) and (d) are for the TE01 modes.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

| P = j = 1 M bm a j | P j exp ( i k n eff , j b z ) + k = 1 M lm b k | P k exp ( i k n eff , k l z ) + | P sw ,
max { n cl , n sub } < Re ( n eff b ) < n co , 0 < Re ( n eff l ) < max { n cl , n sub } ,
| P p I + m = 1 M 1 r p m | P m I = m = 1 M 2 t p m | P m II ,
P n | P m = S ( E m × H n E n × H m ) · z d S = 0 if m n , P n | P sw = 0 , P n | P n = 4 ,
r p n P n I | P n I = m = 1 M 2 t p m P n I | P m II ,
P n I | P p I = m = 1 M 2 t p m P n I | P m II ,
P n II | P p I + m = 1 M 1 r p m P n II | P m I = 0 ,
P n II | P p I + m = 1 M 1 r p m P n II | P m I = t p n P n II | P n II .
4 { r } = [ A 1 ] [ A 2 ] 1 { b 1 } ,
4 { t } = { b 3 } + [ C 1 ] [ C 2 ] 1 { b 2 } ,
r 11 = P 1 I | P 1 II / P 1 I | P 1 II , 4 t 11 = P 1 II | P 1 I P 1 II | P 1 I P 1 II | P 1 I / P 1 II | P 1 I ,
4 t p n = P n II | P p I P n II | P p I P n II | P p I / P n II | P p I ,

Metrics