Abstract

We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369nm and a 935nm laser to the 2S1/22P1/2 and 2D3/23D[3/2]1/2 transitions, respectively, of Yb+ ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb+ ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of Ytterbium ions in a discharge

Michael W Lee, Marie Claire Jarratt, Christian Marciniak, and Michael J Biercuk
Opt. Express 22(6) 7210-7221 (2014)

Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp

Jae Ihn Kim, Chang Yong Park, Jin Yong Yeom, Eok Bong Kim, and Tai Hyun Yoon
Opt. Lett. 28(4) 245-247 (2003)

Tunable frequency-stabilization of an ultraviolet laser using a hollow-cathode lamp of atomic thallium

Tzu-Ling Chen, Chang-Yi Lin, Jow-Tsong Shy, and Yi-Wei Liu
J. Opt. Soc. Am. B 30(11) 2966-2969 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999).
    [Crossref]
  2. E. Streed, T. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
    [Crossref]
  3. M. W. Lee, M. C. Jarratt, C. Marciniak, and M. J. Biercuk, “Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of ytterbium ions in a discharge,” Opt. Express 22(6), 7210–7221 (2014).
    [Crossref] [PubMed]
  4. J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
    [Crossref]
  5. S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
    [Crossref]
  6. H. S. Moon, W. K. Lee, L. Lee, and J. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 76(18), 3965–3967 (2004).
    [Crossref]
  7. F. E. Becerra, R. T. Willes, S. R. Rolston, and L. A. Orozco, “Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption,” J. Opt. Soc. Am. B. 26(7), 1315–1320 (2009).
    [Crossref]
  8. A. Perez Galvan, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95–100 (2009).
    [Crossref]
  9. M. Petrasiunas, E. W. Streed, T. Weinhold, B. Norton, and D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107(4), 1053–1059 (2012).
    [Crossref]
  10. A. M. Märtensson-Pendril, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4-nm 6s1/2−6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351–3365 (1994).
    [Crossref]
  11. A. T. Nguyen, L. B. Wang, M. M. Schauer, and J. R. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instr. 81, 053110 (2010).
    [Crossref]
  12. P. W. Smith and T. Hänsch, “Cross relaxation effects in the saturation of the 6328 neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
    [Crossref]
  13. J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
    [Crossref]
  14. W. Demtroder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol I.
  15. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7(11), 537–539 (1982).
    [Crossref] [PubMed]
  16. J. F. Eble and F. Schmid-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41s0 to 41p1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
    [Crossref]
  17. D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol 19(10), 105601 (2008).
    [Crossref]

2014 (1)

2012 (1)

M. Petrasiunas, E. W. Streed, T. Weinhold, B. Norton, and D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107(4), 1053–1059 (2012).
[Crossref]

2011 (1)

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

2010 (1)

A. T. Nguyen, L. B. Wang, M. M. Schauer, and J. R. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instr. 81, 053110 (2010).
[Crossref]

2009 (2)

F. E. Becerra, R. T. Willes, S. R. Rolston, and L. A. Orozco, “Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption,” J. Opt. Soc. Am. B. 26(7), 1315–1320 (2009).
[Crossref]

A. Perez Galvan, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95–100 (2009).
[Crossref]

2008 (2)

E. Streed, T. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[Crossref]

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol 19(10), 105601 (2008).
[Crossref]

2007 (2)

J. F. Eble and F. Schmid-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41s0 to 41p1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
[Crossref]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

2004 (1)

H. S. Moon, W. K. Lee, L. Lee, and J. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 76(18), 3965–3967 (2004).
[Crossref]

1994 (1)

A. M. Märtensson-Pendril, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4-nm 6s1/2−6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351–3365 (1994).
[Crossref]

1983 (1)

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[Crossref]

1982 (1)

1971 (1)

P. W. Smith and T. Hänsch, “Cross relaxation effects in the saturation of the 6328 neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
[Crossref]

Becerra, F. E.

F. E. Becerra, R. T. Willes, S. R. Rolston, and L. A. Orozco, “Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption,” J. Opt. Soc. Am. B. 26(7), 1315–1320 (2009).
[Crossref]

Biercuk, M. J.

Cornish, S. L.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol 19(10), 105601 (2008).
[Crossref]

Demtroder, W.

W. Demtroder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol I.

Eble, J. F.

J. F. Eble and F. Schmid-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41s0 to 41p1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
[Crossref]

Erez, G.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[Crossref]

Gough, D. S.

A. M. Märtensson-Pendril, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4-nm 6s1/2−6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351–3365 (1994).
[Crossref]

Hannaford, P.

A. M. Märtensson-Pendril, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4-nm 6s1/2−6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351–3365 (1994).
[Crossref]

Hänsch, T.

P. W. Smith and T. Hänsch, “Cross relaxation effects in the saturation of the 6328 neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
[Crossref]

Hensinger, W. K.

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

Hughes, M. D.

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

Jarratt, M. C.

Kielpinski, D.

M. Petrasiunas, E. W. Streed, T. Weinhold, B. Norton, and D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107(4), 1053–1059 (2012).
[Crossref]

E. Streed, T. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[Crossref]

Kim, J.

H. S. Moon, W. K. Lee, L. Lee, and J. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 76(18), 3965–3967 (2004).
[Crossref]

King, S. A.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol 19(10), 105601 (2008).
[Crossref]

Lavi, S.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[Crossref]

Lee, L.

H. S. Moon, W. K. Lee, L. Lee, and J. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 76(18), 3965–3967 (2004).
[Crossref]

Lee, M. W.

Lee, W. K.

H. S. Moon, W. K. Lee, L. Lee, and J. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 76(18), 3965–3967 (2004).
[Crossref]

Lekitsch, B.

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

Liran, J.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[Crossref]

Marciniak, C.

Märtensson-Pendril, A. M.

A. M. Märtensson-Pendril, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4-nm 6s1/2−6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351–3365 (1994).
[Crossref]

Matsukevich, D. N.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Maunz, P.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

McCarron, D. J.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol 19(10), 105601 (2008).
[Crossref]

McLoughlin, J. J.

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

Metcalf, H. J.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999).
[Crossref]

Miron, E.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[Crossref]

Moehring, D. L.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Monroe, C.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Moon, H. S.

H. S. Moon, W. K. Lee, L. Lee, and J. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 76(18), 3965–3967 (2004).
[Crossref]

Nguyen, A. T.

A. T. Nguyen, L. B. Wang, M. M. Schauer, and J. R. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instr. 81, 053110 (2010).
[Crossref]

Nizamani, A. H.

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

Norton, B.

M. Petrasiunas, E. W. Streed, T. Weinhold, B. Norton, and D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107(4), 1053–1059 (2012).
[Crossref]

Olmschenk, S.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Oreg, J.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[Crossref]

Orozco, L. A.

F. E. Becerra, R. T. Willes, S. R. Rolston, and L. A. Orozco, “Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption,” J. Opt. Soc. Am. B. 26(7), 1315–1320 (2009).
[Crossref]

A. Perez Galvan, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95–100 (2009).
[Crossref]

Perez Galvan, A.

A. Perez Galvan, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95–100 (2009).
[Crossref]

Petrasiunas, M.

M. Petrasiunas, E. W. Streed, T. Weinhold, B. Norton, and D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107(4), 1053–1059 (2012).
[Crossref]

Rolston, S. R.

F. E. Becerra, R. T. Willes, S. R. Rolston, and L. A. Orozco, “Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption,” J. Opt. Soc. Am. B. 26(7), 1315–1320 (2009).
[Crossref]

Schauer, M. M.

A. T. Nguyen, L. B. Wang, M. M. Schauer, and J. R. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instr. 81, 053110 (2010).
[Crossref]

Schmid-Kaler, F.

J. F. Eble and F. Schmid-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41s0 to 41p1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
[Crossref]

Sheng, D.

A. Perez Galvan, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95–100 (2009).
[Crossref]

Shirley, J. H.

Siverns, J. D.

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

Smith, P. W.

P. W. Smith and T. Hänsch, “Cross relaxation effects in the saturation of the 6328 neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
[Crossref]

Stein, B.

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

Sterling, R. C.

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

Strauss, M

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[Crossref]

Streed, E.

E. Streed, T. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[Crossref]

Streed, E. W.

M. Petrasiunas, E. W. Streed, T. Weinhold, B. Norton, and D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107(4), 1053–1059 (2012).
[Crossref]

Tenenbaum, J.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[Crossref]

Torgerson, J. R.

A. T. Nguyen, L. B. Wang, M. M. Schauer, and J. R. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instr. 81, 053110 (2010).
[Crossref]

van der Straten, P.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999).
[Crossref]

Wang, L. B.

A. T. Nguyen, L. B. Wang, M. M. Schauer, and J. R. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instr. 81, 053110 (2010).
[Crossref]

Weidt, S.

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

Weinhold, T.

M. Petrasiunas, E. W. Streed, T. Weinhold, B. Norton, and D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107(4), 1053–1059 (2012).
[Crossref]

E. Streed, T. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[Crossref]

Willes, R. T.

F. E. Becerra, R. T. Willes, S. R. Rolston, and L. A. Orozco, “Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption,” J. Opt. Soc. Am. B. 26(7), 1315–1320 (2009).
[Crossref]

Younge, K. C.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Zhao, Y.

A. Perez Galvan, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95–100 (2009).
[Crossref]

Appl. Phys. B (2)

M. Petrasiunas, E. W. Streed, T. Weinhold, B. Norton, and D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107(4), 1053–1059 (2012).
[Crossref]

J. F. Eble and F. Schmid-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41s0 to 41p1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
[Crossref]

Appl. Phys. Lett. (2)

E. Streed, T. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[Crossref]

H. S. Moon, W. K. Lee, L. Lee, and J. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 76(18), 3965–3967 (2004).
[Crossref]

Can. J. Phys. (1)

A. Perez Galvan, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95–100 (2009).
[Crossref]

J. Opt. Soc. Am. B. (1)

F. E. Becerra, R. T. Willes, S. R. Rolston, and L. A. Orozco, “Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption,” J. Opt. Soc. Am. B. 26(7), 1315–1320 (2009).
[Crossref]

J. Phys. B (1)

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[Crossref]

Meas. Sci. Technol (1)

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol 19(10), 105601 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (3)

A. M. Märtensson-Pendril, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4-nm 6s1/2−6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351–3365 (1994).
[Crossref]

J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements,” Phys. Rev. A 83, 013406 (2011).
[Crossref]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Phys. Rev. Lett. (1)

P. W. Smith and T. Hänsch, “Cross relaxation effects in the saturation of the 6328 neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
[Crossref]

Rev. Sci. Instr. (1)

A. T. Nguyen, L. B. Wang, M. M. Schauer, and J. R. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instr. 81, 053110 (2010).
[Crossref]

Other (2)

W. Demtroder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol I.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Energy levels of 174Yb+. Spontaneous emission branching ratios are indicated in brackets.
Fig. 2
Fig. 2 Optical layout for CORELL spectroscopy. HCDL - Hollow Cathode Discharge Lamp, PID - Proportional-Integral-Differential controller, PBS - polarization Beam Splitter. The lamp voltage V s is typically kept at 630V, and R is a ballast resitor.
Fig. 3
Fig. 3 Experimental spectroscopic signals obtained by scanning the 369nm laser frequency and holding the 935nm laser on resonance for the repump transition of 174Yb+. The signal from the lock-in amplifier referenced to the modulation frequency of the 369nm pump is shown in blue. The signal from the lock-in amplifier referenced to the modulation frequency of the 935nm laser is shown in red. Both signals are independently normalized. Note that the blue curve is due to increased transmission of the 369nm laser probe, due to saturation. On the other hand, the red curve is due to increased absorption of the 369nm laser due to re-population of the 2S1/2 state by the 935nm laser. The full-width half-maximum of the 935nm feature is 683MHz, while that of the 174Yb+ saturation feature at 369nm is 160MHz. A lock-in time constant of 3ms was used, and the graph shows the average over 16 oscilloscope traces.
Fig. 4
Fig. 4 Contour plots showing the topology of the coupled resonance signal from the lock-in amplifier referenced to the 935nm laser as a function of the 369nm and 935nm laser detunings. (a) The experimental results obtained by locking the 935nm laser to a wavelength meter and scanning the 369nm laser. (b) The topology predicted by a rate equation model incorporating strong velocity changing collisions.
Fig. 5
Fig. 5 Experimental setup for performing laser frequency stabilization using CORELL. An EOM is used to phase modulate the pump beam of the 369nm laser. The 935nm laser is current modulated.
Fig. 6
Fig. 6 (a) Experimental 369nm modulation transfer spectroscopy error signal for 174Yb+ in solid blue. The dashed green line shows the slope of the error signal at the zero crossing point. A lock in time constant of 0.5ms and scaling of 50V/Vrms were used. In (b), the blue curve shows the experimental locked error signal over a period of 1000s. The dashed black lines indicate one standard deviation above and below the lock point.
Fig. 7
Fig. 7 (a) Experimental 935nm CORELL error signal for the 174Yb+ 2D3/23D[3/2]1/2 transition in solid red. The dashed green line shows the slope of the error signal at the zero crossing point. The 369nm laser is locked to the resonance center. In (b), the red curve shows the experimental locked error signal over a period of 450s. The dashed black lines indicate one standard deviation above and below the lock point. A lock in time constant of 221ms was used with a scaling of 50V/Vrms.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d n 1 ( v ) d t = 1 τ 2 ( I 1 Pump 2 I s 1 ( ω 1 , v ) + I 1 Probe 2 I s 1 ( ω 1 , v ) ) ( n 1 ( v ) + n 2 ( v ) ) + b 21 n 2 ( v ) τ 2 + b 41 n 4 ( v ) τ 4 + R 31 n 3 ( v ) R 13 n 1 ( v ) + R c [ n 1 ( v ) G ( v ) n 1 ( v ) d v ]
d n 2 ( v ) d t = 1 τ 2 ( I 1 Pump 2 I s 1 ( ω 1 , v ) + I 1 Probe 2 I s 1 ( ω 1 , v ) ) ( n 1 ( v ) n 2 ( v ) ) n 2 ( v ) τ 2 + R c [ n 2 ( v ) G ( v ) n 2 ( v ) d v ]
d n 3 ( v ) d t = 1 τ 4 ( I 2 Pump 2 I s 2 ( ω 2 , v ) ) ( n 3 ( v ) + n 4 ( v ) ) + b 43 n 4 ( v ) τ 4 + b 23 n 2 ( v ) τ 2 R 31 n 3 ( v ) + R 13 n 1 ( v ) + R c [ n 3 ( v ) G ( v ) n 3 ( v ) d v ]
d n 4 d t = 1 τ 4 ( I 2 Pump 2 I s 2 ( ω 2 , v ) ) ( n 3 ( v ) n 4 ( v ) ) n 4 ( v ) τ 4 + R c [ n 4 ( v ) G ( v ) n 4 ( v ) d v ] .
n 1 ( v ) + n 2 ( v ) + n 3 ( v ) + n 4 ( v ) = G ( v ) N ,
I s ( ω , v ) = h ¯ ω 2 τ σ 0 g ( ω , v ) ,
g ( ω , v ) = ( Γ / 2 ) 2 / ( ( Γ / 2 ) 2 + ( ω ω 0 v k ) 2 ) .
Δ I probe ( ω 1 , ω 2 , v ) = n 2 τ 2 h ¯ ω Δ z .

Metrics