Abstract

We present occurrence of the strongly localized modes with high transmission in one dimensional symmetric Thue-Morse quasicrystals. This quasicrystal has some interesting properties, including (i) there are strongly localized modes in separated regions which are around odd semi-quarter-wave thickness of the system, (ii) both the frequency of localized mode and the thicknesses of the space layer to appear localized modes are variant for different generation orders of the system, and (iii) the sharpness of the resonant peaks in the transmission spectra increases as the generation order of the system increases.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Features of the perfect transmission in Thue–Morse dielectric multilayers

W. J. Hsueh, S. J. Wun, Z. J. Lin, and Y. H. Cheng
J. Opt. Soc. Am. B 28(11) 2584-2591 (2011)

Sharp resonance with complete transmission in Thue-Morse microring resonators

C. W. Tsao, Y. H. Cheng, and W. J. Hsueh
Opt. Express 23(10) 13613-13618 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1988).
  2. S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett. 106(1), 013901 (2011).
    [Crossref] [PubMed]
  3. A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
    [Crossref]
  4. X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
    [Crossref] [PubMed]
  5. W. J. Hsueh and S. J. Wun, “Simple expressions for the maximum omnidirectional bandgap of bilayer photonic crystals,” Opt. Lett. 36(9), 1581–1583 (2011).
    [Crossref] [PubMed]
  6. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [Crossref] [PubMed]
  7. X. Wang, J. Young, Z. Chen, D. Weinstein, and J. Yang, “Observation of lower to higher bandgap transition of one-dimensional defect modes,” Opt. Express 14(16), 7362–7367 (2006).
    [Crossref] [PubMed]
  8. K. K. Law, R. H. Yan, J. L. Merz, and L. A. Coldren, “Normally-off high-contrast asymmetric Fabry–Perot reflection modulator using Wannier–Stark localization in a superlattice,” Appl. Phys. Lett. 56(19), 1886–1888 (1990).
    [Crossref]
  9. K. Zhou, Z. Guo, J. Wang, and S. Liu, “Defect modes in defective parity-time symmetric periodic complex potentials,” Opt. Lett. 35(17), 2928–2930 (2010).
    [Crossref] [PubMed]
  10. A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110(3), 037403 (2013).
    [Crossref] [PubMed]
  11. W. Liang, Y. Xu, J. M. Choi, and A. Yariv, “Engineering transverse Bragg resonance waveguides for large modal volume lasers,” Opt. Lett. 28(21), 2079–2081 (2003).
    [Crossref] [PubMed]
  12. C. H. Chang, C. H. Chen, and W. J. Hsueh, “Strong photoluminescence emission from resonant Fibonacci quantum wells,” Opt. Express 21(12), 14656–14661 (2013).
    [Crossref] [PubMed]
  13. J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454(7203), 501–504 (2008).
    [Crossref] [PubMed]
  14. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
    [Crossref]
  15. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
    [Crossref]
  16. W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A 78(1), 013836 (2008).
    [Crossref]
  17. D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
    [Crossref]
  18. W. J. Hsueh, C. H. Chang, Y. H. Cheng, and S. J. Wun, “Effective Bragg conditions in a one-dimensional quasicrystal,” Opt. Express 20(24), 26618–26623 (2012).
    [Crossref] [PubMed]
  19. L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
    [Crossref]
  20. T. Ma, C. Liang, L.-G. Wang, and H.-Q. Lin, “Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence,” Appl. Phys. Lett. 100(25), 252402 (2012).
    [Crossref]
  21. N.-H. Liu, “Propagation of light waves in Thue-Morse dielectric multilayers,” Phys. Rev. B 55(6), 3543–3547 (1997).
    [Crossref]
  22. C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
    [Crossref] [PubMed]
  23. C. W. Tsao, W. J. Hsueh, C. H. Chang, and Y. H. Cheng, “Quasi-Bragg conditions in Thue-Morse dielectric multilayers,” Opt. Lett. 38(22), 4562–4565 (2013).
    [Crossref] [PubMed]

2013 (3)

2012 (3)

W. J. Hsueh, C. H. Chang, Y. H. Cheng, and S. J. Wun, “Effective Bragg conditions in a one-dimensional quasicrystal,” Opt. Express 20(24), 26618–26623 (2012).
[Crossref] [PubMed]

T. Ma, C. Liang, L.-G. Wang, and H.-Q. Lin, “Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence,” Appl. Phys. Lett. 100(25), 252402 (2012).
[Crossref]

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

2011 (2)

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett. 106(1), 013901 (2011).
[Crossref] [PubMed]

W. J. Hsueh and S. J. Wun, “Simple expressions for the maximum omnidirectional bandgap of bilayer photonic crystals,” Opt. Lett. 36(9), 1581–1583 (2011).
[Crossref] [PubMed]

2010 (2)

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

K. Zhou, Z. Guo, J. Wang, and S. Liu, “Defect modes in defective parity-time symmetric periodic complex potentials,” Opt. Lett. 35(17), 2928–2930 (2010).
[Crossref] [PubMed]

2008 (2)

W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A 78(1), 013836 (2008).
[Crossref]

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454(7203), 501–504 (2008).
[Crossref] [PubMed]

2006 (2)

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[Crossref]

X. Wang, J. Young, Z. Chen, D. Weinstein, and J. Yang, “Observation of lower to higher bandgap transition of one-dimensional defect modes,” Opt. Express 14(16), 7362–7367 (2006).
[Crossref] [PubMed]

2005 (1)

C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
[Crossref] [PubMed]

2004 (1)

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

2003 (1)

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

1997 (1)

N.-H. Liu, “Propagation of light waves in Thue-Morse dielectric multilayers,” Phys. Rev. B 55(6), 3543–3547 (1997).
[Crossref]

1990 (1)

K. K. Law, R. H. Yan, J. L. Merz, and L. A. Coldren, “Normally-off high-contrast asymmetric Fabry–Perot reflection modulator using Wannier–Stark localization in a superlattice,” Appl. Phys. Lett. 56(19), 1886–1888 (1990).
[Crossref]

1984 (2)

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
[Crossref]

Bechinger, C.

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454(7203), 501–504 (2008).
[Crossref] [PubMed]

Beere, H. E.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Blech, I.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Cahn, J. W.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Chang, C. H.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Chen, C. H.

C. H. Chang, C. H. Chen, and W. J. Hsueh, “Strong photoluminescence emission from resonant Fibonacci quantum wells,” Opt. Express 21(12), 14656–14661 (2013).
[Crossref] [PubMed]

W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A 78(1), 013836 (2008).
[Crossref]

Chen, C. T.

W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A 78(1), 013836 (2008).
[Crossref]

Chen, Z.

Cheng, Y. H.

Choi, J. M.

Coldren, L. A.

K. K. Law, R. H. Yan, J. L. Merz, and L. A. Coldren, “Normally-off high-contrast asymmetric Fabry–Perot reflection modulator using Wannier–Stark localization in a superlattice,” Appl. Phys. Lett. 56(19), 1886–1888 (1990).
[Crossref]

Dal Negro, L.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Duan, X.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Fainstein, A.

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110(3), 037403 (2013).
[Crossref] [PubMed]

Faist, J.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Fallani, L.

C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
[Crossref] [PubMed]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Fort, C.

C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
[Crossref] [PubMed]

Gratias, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Guarrera, V.

C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
[Crossref] [PubMed]

Guo, Z.

Haavisto, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Helden, L.

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454(7203), 501–504 (2008).
[Crossref] [PubMed]

Henneberger, F.

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett. 106(1), 013901 (2011).
[Crossref] [PubMed]

Hibbins, A. P.

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[Crossref]

Hsueh, W. J.

Huang, X. R.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Inguscio, M.

C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
[Crossref] [PubMed]

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Jusserand, B.

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110(3), 037403 (2013).
[Crossref] [PubMed]

Kalusniak, S.

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett. 106(1), 013901 (2011).
[Crossref] [PubMed]

Kimerling, L. C.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Lanzillotti-Kimura, N. D.

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110(3), 037403 (2013).
[Crossref] [PubMed]

Law, K. K.

K. K. Law, R. H. Yan, J. L. Merz, and L. A. Coldren, “Normally-off high-contrast asymmetric Fabry–Perot reflection modulator using Wannier–Stark localization in a superlattice,” Appl. Phys. Lett. 56(19), 1886–1888 (1990).
[Crossref]

LeBlanc, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Levine, D.

D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
[Crossref]

Liang, C.

T. Ma, C. Liang, L.-G. Wang, and H.-Q. Lin, “Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence,” Appl. Phys. Lett. 100(25), 252402 (2012).
[Crossref]

Liang, W.

Lin, H.-Q.

T. Ma, C. Liang, L.-G. Wang, and H.-Q. Lin, “Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence,” Appl. Phys. Lett. 100(25), 252402 (2012).
[Crossref]

Liu, N.-H.

N.-H. Liu, “Propagation of light waves in Thue-Morse dielectric multilayers,” Phys. Rev. B 55(6), 3543–3547 (1997).
[Crossref]

Liu, S.

Lockyear, M. J.

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[Crossref]

Lye, J. E.

C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
[Crossref] [PubMed]

Ma, T.

T. Ma, C. Liang, L.-G. Wang, and H.-Q. Lin, “Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence,” Appl. Phys. Lett. 100(25), 252402 (2012).
[Crossref]

Macrander, A. T.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Merz, J. L.

K. K. Law, R. H. Yan, J. L. Merz, and L. A. Coldren, “Normally-off high-contrast asymmetric Fabry–Perot reflection modulator using Wannier–Stark localization in a superlattice,” Appl. Phys. Lett. 56(19), 1886–1888 (1990).
[Crossref]

Michel, J.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Mikhael, J.

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454(7203), 501–504 (2008).
[Crossref] [PubMed]

Modugno, M.

C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
[Crossref] [PubMed]

Peng, R. W.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Perrin, B.

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110(3), 037403 (2013).
[Crossref] [PubMed]

Ritchie, D. A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Roth, J.

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454(7203), 501–504 (2008).
[Crossref] [PubMed]

Sambles, J. R.

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[Crossref]

Shechtman, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Siddons, D. P.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Steinhardt, P. J.

D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
[Crossref]

Stolfi, M.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Tsao, C. W.

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Wang, J.

Wang, L.-G.

T. Ma, C. Liang, L.-G. Wang, and H.-Q. Lin, “Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence,” Appl. Phys. Lett. 100(25), 252402 (2012).
[Crossref]

Wang, X.

Weinstein, D.

Wiersma, D. S.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
[Crossref] [PubMed]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Wu, X. S.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Wun, S. J.

Wünsche, H. J.

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett. 106(1), 013901 (2011).
[Crossref] [PubMed]

Xu, Y.

Yan, R. H.

K. K. Law, R. H. Yan, J. L. Merz, and L. A. Coldren, “Normally-off high-contrast asymmetric Fabry–Perot reflection modulator using Wannier–Stark localization in a superlattice,” Appl. Phys. Lett. 56(19), 1886–1888 (1990).
[Crossref]

Yang, J.

Yariv, A.

Yi, Y.

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

Young, J.

Zhou, K.

Appl. Phys. Lett. (3)

K. K. Law, R. H. Yan, J. L. Merz, and L. A. Coldren, “Normally-off high-contrast asymmetric Fabry–Perot reflection modulator using Wannier–Stark localization in a superlattice,” Appl. Phys. Lett. 56(19), 1886–1888 (1990).
[Crossref]

L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84(25), 5186–5188 (2004).
[Crossref]

T. Ma, C. Liang, L.-G. Wang, and H.-Q. Lin, “Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence,” Appl. Phys. Lett. 100(25), 252402 (2012).
[Crossref]

J. Appl. Phys. (1)

A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[Crossref]

Nat. Photonics (1)

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[Crossref]

Nature (1)

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454(7203), 501–504 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (1)

W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A 78(1), 013836 (2008).
[Crossref]

Phys. Rev. B (1)

N.-H. Liu, “Propagation of light waves in Thue-Morse dielectric multilayers,” Phys. Rev. B 55(6), 3543–3547 (1997).
[Crossref]

Phys. Rev. Lett. (6)

C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95(17), 170410 (2005).
[Crossref] [PubMed]

A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, “Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light,” Phys. Rev. Lett. 110(3), 037403 (2013).
[Crossref] [PubMed]

D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
[Crossref]

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett. 106(1), 013901 (2011).
[Crossref] [PubMed]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The transmission spectra in the STMS’s with generation orders (a) ν = 5, and (b) ν = 6, for normal incidence from air. The gray areas correspond to the region of the major gap in the band structure of the Thue-Morse superlattice. The |E|2 distribution in the ν5 STMS for (c) Ω = 0.2308 and (d) Ω = 0.5192, respectively, which correspond to the signs, A and B, in Fig. 1(a). The parameters of the system are nA = 1, nB = 2, nD = 2, dA = 2/3µm, dB = 1/3µm, and dS = 4/3µm. The normalized frequency, Ω, is defined by Ω = ωD/2πc, where D = dA + dB.
Fig. 2
Fig. 2 (a)The plot of the change of the normalized frequency for resonant lines versus the thickness of the space layer for normal incidence in a ν = 6 STMS, for nA = 1, nB = 2. The gray areas correspond to the major gaps of the Thue-Morse superlattice. The signs, A, B, C and D, show the intersection points of the red midline in the major gaps and the black resonant lines. (b) ΦS,U/π in the up major gap and ΦS,D/π in the down major gap, versus the generation orders. The blue solid line and the green dashed line correspond to ΦS,U/π and ΦS,D/π, respectively
Fig. 3
Fig. 3 The transmission spectra in the STMS versus ΦS/π at the middle positions are in (a) the up major gap and (b) the down major gap, respectively. (c) The transmission spectra versus ΦD/π at the middle position in the fundamental major gap for the PBD. The dashed red, the dotted green and the solid blue lines correspond to the generation orders ν = 3 to 5 in the STMS and to the numbers of period, m = 2, 4 and 8, in the PBD, respectively. (d) The FWHM and the group delay, S/, on the first whole resonant line in major gap versus the generation orders of the STMS. The black solid line and the blue dotted line correspond to the up and down major gaps for the FWHM. The red solid line and the green dotted line correspond to the up and down major gaps for the group delay
Fig. 4
Fig. 4 The |E|2 distribution in the ν5 STMS, for (a) dS = 0.37µm and Ω = 0.519 in the three semi-quarter-wave thickness and (b) dS = 0.245µm and Ω = 0.2315 in the semi-quarter-wave thickness, respectively, and in the ν6 STMS, for (c) dS = 0.43µm and Ω = 0.5 in the three semi-quarter-wave thickness and (d) dS = 0.135µm and Ω = 0.25 in the semi-quarter-wave thickness, respectively, which correspond to the signs, C and A, in Fig. 2. The white areas symbolize the bonding media. The yellow, green and light blue areas symbolize materials A and B and the space layer, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P S = ( d A + d B ) / 2 n S Ω ,
Φ S =( d S / P S )π.

Metrics