Abstract

We report on an acousto-optic Q-switched 1645 nm Er:YAG ceramic laser resonantly pumped by using an Er,Yb fiber laser at 1532 nm. Maximum continuous wave output powers of 2.1 W and 2.4 W were obtained for 10% and 20% transmission OCs under 10.5 W of incident pump power, respectively. In Q-switched mode, the laser produced pulses with ~3.7 mJ energy and 82 ns width at 200 Hz repetition rate for 20% transmission OC under 8.6 W of incident pump power, corresponding to a peak power of ~45 kW.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resonantly pumped acousto-optic Q-switched Er:YAG lasers at 1617 and 1645  nm

Ran Wang, Qing Ye, and Chunqing Gao
Appl. Opt. 53(10) 2093-2096 (2014)

Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

N.W.H. Chang, N. Simakov, D.J. Hosken, J. Munch, D.J. Ottaway, and P.J. Veitch
Opt. Express 18(13) 13673-13678 (2010)

Stable high-energy Q-switched resonantly diode-pumped Er:YAG laser at 1645  nm

Pinghua Tang, Rong Zhou, Chujun Zhao, Changwen Xu, Jun Liu, Han Zhang, Deyuan Shen, and Shuangchun Wen
Appl. Opt. 53(32) 7773-7777 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
    [Crossref] [PubMed]
  2. I. Kudryashov and A. Katsnelson, “1645 nm Q-switched laser with in-band diode pumping,” Proc. SPIE 7686, 76860B (2010).
    [Crossref]
  3. S. Bigotta and M. Eichhorn, “Q-switched resonantly diode-pumped Er3+:YAG laser with fiberlike geometry,” Opt. Lett. 35(17), 2970–2972 (2010).
    [Crossref] [PubMed]
  4. L. Zhu, M. J. Wang, J. Zhou, and W. B. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode,” Opt. Express 19(27), 26810–26815 (2011).
    [Crossref] [PubMed]
  5. M. J. Wang, L. Zhu, W. B. Chen, and D. Y. Fan, “High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature,” Opt. Lett. 37(17), 3732–3734 (2012).
    [Crossref] [PubMed]
  6. R. Wang, Q. Ye, and C. Q. Gao, “Resonantly pumped acousto-optic Q-switched Er:YAG lasers at 1617 and 1645 nm,” Appl. Opt. 53(10), 2093–2096 (2014).
    [Crossref] [PubMed]
  7. A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38(6), 938–940 (2013).
    [Crossref] [PubMed]
  8. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29(10), 1075–1077 (2004).
    [Crossref] [PubMed]
  9. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
    [Crossref] [PubMed]
  10. J. W. Kim, J. K. Sahu, and W. A. Clarkson, “High-energy Q-switched operation of a fiber-laser-pumped Er:YAG laser,” Appl. Phys. B 105(2), 263–267 (2011).
    [Crossref]
  11. D. W. Chen, M. Birnbaum, P. M. Belden, T. S. Rose, and S. M. Beck, “Multiwatt continuous-wave and Q-switched Er:YAG lasers at 1645 nm: performance issues,” Opt. Lett. 34(10), 1501–1503 (2009).
    [Crossref] [PubMed]
  12. A. Ikesue, Y. L. Aung, and V. Lupei, Ceramic Lasers (Cambridge University Press, 2013).
  13. N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Performance analysis of the ultra-low quantum defect Er:Sc2O3 laser (invited),” Opt. Mater. Express 1(3), 503–513 (2011).
    [Crossref]
  14. N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 ceramic laser for remote CO2 monitoring,” Laser Phys. 19(4), 867–869 (2009).
    [Crossref]
  15. N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett. 35(7), 922–924 (2010).
    [Crossref] [PubMed]
  16. D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
    [Crossref]
  17. X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
    [Crossref]
  18. C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
    [Crossref] [PubMed]
  19. Y. Wang, H. Chen, D. Y. Shen, J. Zhang, and D. Y. Tang, “High power continuous-wave and graphene Q-switched operation of Er:YAG ceramic laser at ~1.6 μm,” J. Opt. Soc. Korea 17(1), 5–9 (2013).
    [Crossref]
  20. Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
    [Crossref]
  21. N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Sel. Top. Quantum Electron. 13(3), 435–447 (2007).
    [Crossref]
  22. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]

2014 (1)

2013 (3)

2012 (1)

2011 (6)

N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Performance analysis of the ultra-low quantum defect Er:Sc2O3 laser (invited),” Opt. Mater. Express 1(3), 503–513 (2011).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

L. Zhu, M. J. Wang, J. Zhou, and W. B. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode,” Opt. Express 19(27), 26810–26815 (2011).
[Crossref] [PubMed]

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “High-energy Q-switched operation of a fiber-laser-pumped Er:YAG laser,” Appl. Phys. B 105(2), 263–267 (2011).
[Crossref]

D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
[Crossref]

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

2010 (4)

2009 (2)

D. W. Chen, M. Birnbaum, P. M. Belden, T. S. Rose, and S. M. Beck, “Multiwatt continuous-wave and Q-switched Er:YAG lasers at 1645 nm: performance issues,” Opt. Lett. 34(10), 1501–1503 (2009).
[Crossref] [PubMed]

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 ceramic laser for remote CO2 monitoring,” Laser Phys. 19(4), 867–869 (2009).
[Crossref]

2007 (1)

N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Sel. Top. Quantum Electron. 13(3), 435–447 (2007).
[Crossref]

2006 (1)

2004 (1)

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Aubourg, A.

Aubry, N.

Balembois, F.

Barnes, N. P.

N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Sel. Top. Quantum Electron. 13(3), 435–447 (2007).
[Crossref]

Beck, S. M.

Belden, P. M.

Bigotta, S.

Birnbaum, M.

Budni, P. A.

Chang, N. W. H.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Chen, D. W.

Chen, H.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Y. Wang, H. Chen, D. Y. Shen, J. Zhang, and D. Y. Tang, “High power continuous-wave and graphene Q-switched operation of Er:YAG ceramic laser at ~1.6 μm,” J. Opt. Soc. Korea 17(1), 5–9 (2013).
[Crossref]

D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
[Crossref]

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Chen, W. B.

Chicklis, E. P.

Clarkson, W. A.

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “High-energy Q-switched operation of a fiber-laser-pumped Er:YAG laser,” Appl. Phys. B 105(2), 263–267 (2011).
[Crossref]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

Didierjean, J.

Dubinskii, M.

Eichhorn, M.

Fan, D. Y.

Fromzel, V.

Gao, C. Q.

Georges, P.

Hosken, D. J.

Huang, H. T.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Katsnelson, A.

I. Kudryashov and A. Katsnelson, “1645 nm Q-switched laser with in-band diode pumping,” Proc. SPIE 7686, 76860B (2010).
[Crossref]

Kim, J. W.

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “High-energy Q-switched operation of a fiber-laser-pumped Er:YAG laser,” Appl. Phys. B 105(2), 263–267 (2011).
[Crossref]

Kou, H. M.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kudryashov, I.

I. Kudryashov and A. Katsnelson, “1645 nm Q-switched laser with in-band diode pumping,” Proc. SPIE 7686, 76860B (2010).
[Crossref]

Kupp, E. R.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Li, J.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Merkle, L. D.

N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett. 35(7), 922–924 (2010).
[Crossref] [PubMed]

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 ceramic laser for remote CO2 monitoring,” Laser Phys. 19(4), 867–869 (2009).
[Crossref]

Messing, G. L.

Munch, J.

Newburgh, G. A.

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 ceramic laser for remote CO2 monitoring,” Laser Phys. 19(4), 867–869 (2009).
[Crossref]

Ottaway, D. J.

Pan, Y. B.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Pollak, T. M.

Qian, L. J.

Qin, X. P.

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
[Crossref]

Rose, T. S.

Sahu, J. K.

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “High-energy Q-switched operation of a fiber-laser-pumped Er:YAG laser,” Appl. Phys. B 105(2), 263–267 (2011).
[Crossref]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

Setzler, S. D.

Shen, D. Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Y. Wang, H. Chen, D. Y. Shen, J. Zhang, and D. Y. Tang, “High power continuous-wave and graphene Q-switched operation of Er:YAG ceramic laser at ~1.6 μm,” J. Opt. Soc. Korea 17(1), 5–9 (2013).
[Crossref]

D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
[Crossref]

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

Simakov, N.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Snell, K. J.

Tang, D. Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Y. Wang, H. Chen, D. Y. Shen, J. Zhang, and D. Y. Tang, “High power continuous-wave and graphene Q-switched operation of Er:YAG ceramic laser at ~1.6 μm,” J. Opt. Soc. Korea 17(1), 5–9 (2013).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
[Crossref]

Ter-Gabrielyan, N.

Veitch, P. J.

Wang, M. J.

Wang, R.

Wang, Y.

Yang, X. F.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

Ye, Q.

Young, Y. E.

Zhang, C.

Zhang, J.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Y. Wang, H. Chen, D. Y. Shen, J. Zhang, and D. Y. Tang, “High power continuous-wave and graphene Q-switched operation of Er:YAG ceramic laser at ~1.6 μm,” J. Opt. Soc. Korea 17(1), 5–9 (2013).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
[Crossref]

Zhao, T.

D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
[Crossref]

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

Zhou, J.

L. Zhu, M. J. Wang, J. Zhou, and W. B. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode,” Opt. Express 19(27), 26810–26815 (2011).
[Crossref] [PubMed]

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Zhu, L.

Zhu, Z. X.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “High-energy Q-switched operation of a fiber-laser-pumped Er:YAG laser,” Appl. Phys. B 105(2), 263–267 (2011).
[Crossref]

Appl. Phys. Express (1)

D. Y. Shen, H. Chen, X. P. Qin, J. Zhang, D. Y. Tang, X. F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser in-band pumped by a high-power Er,Yb fiber laser at 1532 nm,” Appl. Phys. Express 4(5), 052701 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Sel. Top. Quantum Electron. 13(3), 435–447 (2007).
[Crossref]

J. Opt. Soc. Korea (1)

Laser Phys. (2)

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 ceramic laser for remote CO2 monitoring,” Laser Phys. 19(4), 867–869 (2009).
[Crossref]

Laser Phys. Lett. (1)

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (8)

M. J. Wang, L. Zhu, W. B. Chen, and D. Y. Fan, “High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature,” Opt. Lett. 37(17), 3732–3734 (2012).
[Crossref] [PubMed]

A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38(6), 938–940 (2013).
[Crossref] [PubMed]

Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29(10), 1075–1077 (2004).
[Crossref] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett. 35(7), 922–924 (2010).
[Crossref] [PubMed]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

D. W. Chen, M. Birnbaum, P. M. Belden, T. S. Rose, and S. M. Beck, “Multiwatt continuous-wave and Q-switched Er:YAG lasers at 1645 nm: performance issues,” Opt. Lett. 34(10), 1501–1503 (2009).
[Crossref] [PubMed]

S. Bigotta and M. Eichhorn, “Q-switched resonantly diode-pumped Er3+:YAG laser with fiberlike geometry,” Opt. Lett. 35(17), 2970–2972 (2010).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Proc. SPIE (1)

I. Kudryashov and A. Katsnelson, “1645 nm Q-switched laser with in-band diode pumping,” Proc. SPIE 7686, 76860B (2010).
[Crossref]

Other (1)

A. Ikesue, Y. L. Aung, and V. Lupei, Ceramic Lasers (Cambridge University Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic setup of the Q-switched Er:YAG ceramic laser.
Fig. 2
Fig. 2 CW output power versus incident pump power. Insert, output spectrum of the Er:YAG ceramic laser for T = 20% under 10.5 W of incident pump power.
Fig. 3
Fig. 3 Pulse energy and width versus PRF with T = 20% OC for 8.6 W of pump power.
Fig. 4
Fig. 4 Average power versus PRF with varying incident pump power for T = 20% OC.
Fig. 5
Fig. 5 Relative storage efficiency versus PRF for T = 20% OC.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η s = t s t p [ 1exp( t p t s ) ]

Metrics