Abstract

Electron-beam deposition of silica and alumina is used to fabricate distributed polarization rotators suitable for smoothing the intensity of large-aperture, high-peak-power lasers. Low-modulation, low-loss transmittance with a high 351-nm laser-damage threshold is achieved.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Glancing-angle–deposited magnesium oxide films for high-fluence applications

J. B. Oliver, C. Smith, J. Spaulding, A. L. Rigatti, B. Charles, S. Papernov, B. Taylor, J. Foster, C. W. Carr, R. Luthi, B. Hollingsworth, and D. Cross
Opt. Mater. Express 6(7) 2291-2303 (2016)

Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand
Opt. Express 20(15) 16596-16610 (2012)

Deposition of SiO2 films with high laser damage thresholds by ion-assisted electron-beam evaporation

Marco Alvisi, Giorgio De Nunzio, Massimo Di Giulio, Maria Cristina Ferrara, Maria Rita Perrone, Lucia Protopapa, and Lorenzo Vasanelli
Appl. Opt. 38(7) 1237-1243 (1999)

References

  • View by:
  • |
  • |
  • |

  1. “Phase conversion using distributed polarization rotation,” LLE Review Quarterly Report45, 1−12, Laboratory for Laser Energetics, University of Rochester, Rochester, NY, LLE Document No. DOE/DP40200–149, NITS Order No. DE91010027 (1990).
  2. S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6(5), 2157–2163 (1999).
    [Crossref]
  3. T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
    [Crossref]
  4. S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
    [Crossref]
  5. T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28(13), 2466–2482 (1989).
    [Crossref] [PubMed]
  6. I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38(16), 3621–3625 (1999).
    [Crossref] [PubMed]
  7. I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” Proc. SPIE 3790, 119–132 (1999).
    [Crossref]
  8. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
    [Crossref]
  9. K. Kaminska and K. Robbie, “Birefringent omnidirectional reflector,” Appl. Opt. 43(7), 1570–1576 (2004).
    [Crossref] [PubMed]
  10. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
    [Crossref] [PubMed]
  11. M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
    [Crossref]
  12. K. M. Krause, M. T. Taschuk, and M. J. Brett, “Glancing angle deposition on a roll: Towards high-throughput nanostructured thin films,” J. Vac. Sci. Technol. A 31(3), 031507 (2013).
    [Crossref]
  13. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987), pp 323–326.
  14. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (IOP Publishing, 2001), pp 37–50.
  15. N. G. Wakefield, J. B. Sorge, M. T. Taschuk, L. W. Bezuidenhout, M. J. Brett, and J. C. Sit, “Control of the principal refractive indices in biaxial metal oxide films,” J. Opt. Soc. Am. A 28(9), 1830–1840 (2011).
    [Crossref]
  16. Q. Wu and I. J. Hodgkinson, “Materials for Birefringent Coatings,” Appl. Opt. 33(34), 8109–8110 (1994).
    [Crossref] [PubMed]
  17. B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
    [Crossref] [PubMed]
  18. J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture National Ignition Facility substrates in a planetary rotation system,” Appl. Opt. 45(13), 3097–3105 (2006).
    [Crossref] [PubMed]
  19. L. L. C. Sensors Technology and C. O. Fort Collins, 80528 ( http://www.sensorstec.com/ ).
  20. J. B. Oliver, J. Bromage, C. Smith, D. Sadowski, C. Dorrer, and A. L. Rigatti, “Plasma-ion-assisted coatings for 15 femtosecond laser systems,” Appl. Opt. 53(4), A221–A228 (2014).
    [Crossref] [PubMed]
  21. S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
    [Crossref]
  22. S. Papernov and A. W. Schmid, “Localized absorption effects during 351 nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82(11), 5422–5432 (1997).
    [Crossref]
  23. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (IOP Publishing, 2001), pp. 488−497.
  24. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
    [Crossref]

2014 (1)

2013 (1)

K. M. Krause, M. T. Taschuk, and M. J. Brett, “Glancing angle deposition on a roll: Towards high-throughput nanostructured thin films,” J. Vac. Sci. Technol. A 31(3), 031507 (2013).
[Crossref]

2012 (2)

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
[Crossref] [PubMed]

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

2011 (1)

2006 (3)

J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture National Ignition Facility substrates in a planetary rotation system,” Appl. Opt. 45(13), 3097–3105 (2006).
[Crossref] [PubMed]

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
[Crossref]

2004 (1)

2003 (1)

1999 (3)

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6(5), 2157–2163 (1999).
[Crossref]

I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38(16), 3621–3625 (1999).
[Crossref] [PubMed]

I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” Proc. SPIE 3790, 119–132 (1999).
[Crossref]

1998 (1)

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

1997 (2)

S. Papernov and A. W. Schmid, “Localized absorption effects during 351 nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82(11), 5422–5432 (1997).
[Crossref]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

1995 (1)

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

1994 (1)

1989 (1)

Anderson, K. S.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Anzellotti, J. F.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Betti, R.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Bezuidenhout, L. W.

Brett, M. J.

K. M. Krause, M. T. Taschuk, and M. J. Brett, “Glancing angle deposition on a roll: Towards high-throughput nanostructured thin films,” J. Vac. Sci. Technol. A 31(3), 031507 (2013).
[Crossref]

N. G. Wakefield, J. B. Sorge, M. T. Taschuk, L. W. Bezuidenhout, M. J. Brett, and J. C. Sit, “Control of the principal refractive indices in biaxial metal oxide films,” J. Opt. Soc. Am. A 28(9), 1830–1840 (2011).
[Crossref]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
[Crossref]

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
[Crossref] [PubMed]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

Bromage, J.

Carbone, F. A.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Collier, D. R.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Collins, T. J. B.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Commandré, M.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
[Crossref] [PubMed]

Craxton, R. S.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6(5), 2157–2163 (1999).
[Crossref]

Delettrez, J. A.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Dixit, S. N.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

Dorrer, C.

Froula, D.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

Gallais, L.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
[Crossref] [PubMed]

Gao, L. H.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
[Crossref] [PubMed]

Geenen, B.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

Goncharov, V. N.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Harding, D. R.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Hawkeye, M. M.

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
[Crossref]

Haynam, C. A.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

Hodgkinson, I.

Hodgkinson, I. J.

I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” Proc. SPIE 3790, 119–132 (1999).
[Crossref]

Q. Wu and I. J. Hodgkinson, “Materials for Birefringent Coatings,” Appl. Opt. 33(34), 8109–8110 (1994).
[Crossref] [PubMed]

Kaminska, K.

Kennedy, S. R.

Krause, K. M.

K. M. Krause, M. T. Taschuk, and M. J. Brett, “Glancing angle deposition on a roll: Towards high-throughput nanostructured thin films,” J. Vac. Sci. Technol. A 31(3), 031507 (2013).
[Crossref]

Lemarchand, F.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
[Crossref] [PubMed]

Leplan, H.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

Lequime, M.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
[Crossref] [PubMed]

MacGowan, B. J.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

Mangote, B.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
[Crossref] [PubMed]

Marozas, J. A.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Marshall, F. J.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

McCrory, R. L.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

McKenty, P. W.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Meyerhofer, D. D.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Motohiro, T.

Munro, D.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

Murray, J. R.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

Nostrand, M.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

Oliver, J. B.

Papernov, S.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351 nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82(11), 5422–5432 (1997).
[Crossref]

Pauleau, Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

Radha, P. B.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Rigatti, A. L.

Robbie, K.

K. Kaminska and K. Robbie, “Birefringent omnidirectional reflector,” Appl. Opt. 43(7), 1570–1576 (2004).
[Crossref] [PubMed]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

Robic, J. Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

Sadowski, D.

Schmid, A. W.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351 nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82(11), 5422–5432 (1997).
[Crossref]

Shvydky, A.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Sit, J. C.

Skupsky, S.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6(5), 2157–2163 (1999).
[Crossref]

Smith, C.

Smith, D. J.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Sorge, J. B.

Taga, Y.

Talbot, D.

Taschuk, M. T.

K. M. Krause, M. T. Taschuk, and M. J. Brett, “Glancing angle deposition on a roll: Towards high-throughput nanostructured thin films,” J. Vac. Sci. Technol. A 31(3), 031507 (2013).
[Crossref]

N. G. Wakefield, J. B. Sorge, M. T. Taschuk, L. W. Bezuidenhout, M. J. Brett, and J. C. Sit, “Control of the principal refractive indices in biaxial metal oxide films,” J. Opt. Soc. Am. A 28(9), 1830–1840 (2011).
[Crossref]

Wakefield, N. G.

Wegner, P. J.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

Wu, Q.

Wu, Q. H.

Zaksas, D.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Zerrad, M.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
[Crossref] [PubMed]

Zuegel, J. D.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Appl. Opt. (7)

J. Appl. Phys. (3)

S. Papernov and A. W. Schmid, “Localized absorption effects during 351 nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82(11), 5422–5432 (1997).
[Crossref]

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. IV France (1)

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV France 133, 717–720 (2006).
[Crossref]

J. Vac. Sci. Technol. A (2)

K. M. Krause, M. T. Taschuk, and M. J. Brett, “Glancing angle deposition on a roll: Towards high-throughput nanostructured thin films,” J. Vac. Sci. Technol. A 31(3), 031507 (2013).
[Crossref]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

Phys. Plasmas (2)

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6(5), 2157–2163 (1999).
[Crossref]

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19(5), 056308 (2012).
[Crossref]

Proc. SPIE (2)

I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” Proc. SPIE 3790, 119–132 (1999).
[Crossref]

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83(1), 013109 (2012).
[Crossref] [PubMed]

Other (5)

L. L. C. Sensors Technology and C. O. Fort Collins, 80528 ( http://www.sensorstec.com/ ).

“Phase conversion using distributed polarization rotation,” LLE Review Quarterly Report45, 1−12, Laboratory for Laser Energetics, University of Rochester, Rochester, NY, LLE Document No. DOE/DP40200–149, NITS Order No. DE91010027 (1990).

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987), pp 323–326.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (IOP Publishing, 2001), pp 37–50.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (IOP Publishing, 2001), pp. 488−497.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Refractive indices of the film are defined with respect to the column orientation in the film structure. The anisotropic film forms a birefringent structure, with principal refractive indices (b) defined by the incident light and the projected orientation relative to the columnar structure.
Fig. 2
Fig. 2 (a) Patterned deposition of right-hand-circular (blue) and left-hand-circular (green) wave plates using GLAD on a 400 × 400-mm fused-silica substrate. (b) A linear array of half-wave plates alternating with uncoated optic regions. The incident polarization would be linear, parallel to an optic edge.
Fig. 3
Fig. 3 (a) Deposition geometry for a 1-in.-wide × 4-in.-long aperture at a distance of 24 in. from the evaporant source, oriented at 75° to the incident vapor flux. (b) The calculated film nonuniformity for ± 75° indicates a significant variation in film thickness, although the film’s performance can be largely compensated by averaging the two angular orientations.
Fig. 4
Fig. 4 Coating chamber configured with a stationary substrate fixture oriented at a high incidence angle relative to the incident evaporant vapor (65° to 85°). Shields limit the coating incident on the walls of the chamber.
Fig. 5
Fig. 5 Retardance map of the coated 100-mm substrate, with four individual coated regions deposited with each blue arrow oriented upward in the chamber. The resulting fast axis of each coated area is aligned with the coating direction and the resulting column structure of the film.
Fig. 6
Fig. 6 Scanning electron microscope image of an alumina film deposited at ± 75° incidence, forming a chevron-like film structure on the fused-silica substrate. The film is approximately 3 μm thick, with a nominal retardance of 87 nm acting as a quarter-wave plate at 351 nm.
Fig. 7
Fig. 7 Retardance map of an alumina film deposited through a rectangular aperture on a stationary substrate. Retardance uniformity demonstrates that the process is suitable for patterning large-aperture optics.
Fig. 8
Fig. 8 System for scanning deposition through a 1 × 3-in. aperture at a distance of 24 in. from the evaporant source, oriented at 70° to the incident vapor flux. Scanning in the (nearly) vertical direction creates individual stripes, while horizontal translation makes it possible to move to a new stripe location.
Fig. 9
Fig. 9 The scanning GLAD process results in a striped substrate with (a) retardance indicating a half-wave–plate performance at 351 nm. (b) The uniformity and edge transitions are clear when viewed between crossed polarizers, with the GLAD structure oriented at ~45° to the incident polarization.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n p = 1 ( sin 2 θ / n x 2 + cos 2 θ/ n y 2 ) 1/2 ,
( E tx E ty )= e i π 4 ( 1 0 0 ±i ) 1 2 ( 1 1 )= e i π 4 2 ( 1 ±i ),
( E tx E ty )=( 1 0 0 1 ) 1 2 ( 1 1 )= 1 2 ( 1 1 ),
( B C )=( cos β 1 isin β 1 n 1 i n 1 sin β 1 cos β 1 )( cos β 2 isin β 2 n 2 i n 2 sin β 2 cos β 2 )( 1 n sub ),
ϒ= C B ,
( B C )=±( cos β 1 isin β 1 n 1 i n 1 sin β 1 cos β 1 )( 1 0 0 1 )( 1 n sub )=±( cos β 1 isin β 1 n 1 i n 1 sin β 1 cos β 1 )( 1 n sub ),
β= 2π n GLAD d GLAD λ ,
β=57π n GLAD .
( B C )=( cos β 1 isin β 1 n 1 i n 1 sin β 1 cos β 1 )( cos β 2 isin β 2 n sub i n sub sin β 2 cos β 2 )( 1 n sub ) =( cos β 1 isin β 1 n 1 i n 1 sin β 1 cos β 1 )( cos β 2 +isin β 2 i n sub sin β 2 + n sub cos β 2 ),
( B C )=( cos β 1 isin β 1 n 1 i n 1 sin β 1 cos β 1 ) e i β 2 ( 1 n sub ).

Metrics