Abstract

We demonstrate the photophoretic trapping of more than several hundreds of absorbing particles by tapered-ring optical traps diffracted from a circular aperture. The experiments with different laser powers show the influence of air flow acting on particles. Three kinds of particles with different densities (about 1~7 g/cm3) and different shapes (spherical, non-spherical) can be trapped. The non-spherical particles (toner particles) disperse in optical field, while the spherical particles (ink droplets and iron particles) arrange as a straight line. More importantly, in the experiments of two counter-propagating tapered-ring beams, the agglomeration of particles is achieved and can help research the dynamics of aerosols.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra

Yong-Le Pan, Steven C. Hill, and Mark Coleman
Opt. Express 20(5) 5325-5334 (2012)

Manipulation of aerosols revolving in taper-ring optical traps

Fengrui Liu, Zhigang Zhang, Shihua Fu, Yufeng Wei, Teng Cheng, Qingchuan Zhang, and Xiaoping Wu
Opt. Lett. 39(1) 100-103 (2014)

Photophoretic trapping of airborne particles using ultraviolet illumination

Brandon Redding, Steven C. Hill, Dimitri Alexson, Chuji Wang, and Yong-Le Pan
Opt. Express 23(3) 3630-3639 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat Commun. 4, 1768 (2013).
    [Crossref] [PubMed]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  4. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  5. H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
    [Crossref] [PubMed]
  6. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophot. 2(1), 021875 (2008).
    [Crossref]
  7. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [Crossref] [PubMed]
  8. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  9. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
    [Crossref]
  10. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  11. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
    [Crossref] [PubMed]
  12. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Z. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009).
    [Crossref] [PubMed]
  13. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
    [Crossref] [PubMed]
  14. V. G. Shvedov, C. Hnatovsky, A. V. Rode, and W. Krolikowski, “Robust trapping and manipulation of airborne particles with a bottle beam,” Opt. Express 19(18), 17350–17356 (2011).
    [Crossref] [PubMed]
  15. F. Liu, Z. Zhang, S. Fu, Y. Wei, T. Cheng, Q. Zhang, and X. Wu, “Manipulation of aerosols revolving in taper-ring optical traps,” Opt. Lett. 39(1), 100–103 (2014).
    [Crossref] [PubMed]
  16. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
    [Crossref] [PubMed]
  17. M. Esseling, P. Rose, C. Alpmann, and C. Denz, “Photophoretic trampoline—Interaction of single airborne absorbing droplets with light,” Appl. Phys. Lett. 101(13), 131115 (2012).
    [Crossref]
  18. Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20(5), 5325–5334 (2012).
    [Crossref] [PubMed]
  19. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett. 36(8), 1491–1493 (2011).
    [Crossref] [PubMed]
  20. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
    [Crossref] [PubMed]
  21. J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
    [Crossref]
  22. G. Wurm, J. Teiser, and D. Reiss, “Greenhouse and thermophoretic effects in dust layers: The missing link for lifting of dust on Mars,” Geophys. Res. Lett. 35(10), L10201 (2008).
    [Crossref]
  23. J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
    [Crossref]

2014 (2)

F. Liu, Z. Zhang, S. Fu, Y. Wei, T. Cheng, Q. Zhang, and X. Wu, “Manipulation of aerosols revolving in taper-ring optical traps,” Opt. Lett. 39(1), 100–103 (2014).
[Crossref] [PubMed]

J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
[Crossref]

2013 (1)

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat Commun. 4, 1768 (2013).
[Crossref] [PubMed]

2012 (2)

M. Esseling, P. Rose, C. Alpmann, and C. Denz, “Photophoretic trampoline—Interaction of single airborne absorbing droplets with light,” Appl. Phys. Lett. 101(13), 131115 (2012).
[Crossref]

Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20(5), 5325–5334 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (3)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref] [PubMed]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophot. 2(1), 021875 (2008).
[Crossref]

G. Wurm, J. Teiser, and D. Reiss, “Greenhouse and thermophoretic effects in dust layers: The missing link for lifting of dust on Mars,” Geophys. Res. Lett. 35(10), L10201 (2008).
[Crossref]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

1997 (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

1995 (1)

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

1994 (2)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Alpmann, C.

M. Esseling, P. Rose, C. Alpmann, and C. Denz, “Photophoretic trampoline—Interaction of single airborne absorbing droplets with light,” Appl. Phys. Lett. 101(13), 131115 (2012).
[Crossref]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Chen, Z.

Cheng, T.

Christodoulides, D. N.

Coleman, M.

Denz, C.

M. Esseling, P. Rose, C. Alpmann, and C. Denz, “Photophoretic trampoline—Interaction of single airborne absorbing droplets with light,” Appl. Phys. Lett. 101(13), 131115 (2012).
[Crossref]

Desyatnikov, A. S.

Dholakia, K.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref] [PubMed]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophot. 2(1), 021875 (2008).
[Crossref]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophot. 2(1), 021875 (2008).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Esseling, M.

M. Esseling, P. Rose, C. Alpmann, and C. Denz, “Photophoretic trampoline—Interaction of single airborne absorbing droplets with light,” Appl. Phys. Lett. 101(13), 131115 (2012).
[Crossref]

Friese, M. E.

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Fu, S.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref] [PubMed]

He, H.

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Heckenberg, N. R.

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Hernandez, D.

Higurashi, E.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

Hill, S. C.

Hnatovsky, C.

Huang, S.

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[Crossref] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Kivshar, Y. S.

Kivshar, Yu. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
[Crossref] [PubMed]

Knox, K. J.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[Crossref]

Krolikowski, W.

Krolikowski, W. Z.

Li, Y.

J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
[Crossref]

Li, Y.-M.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Lin, J.

J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
[Crossref]

Liu, F.

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophot. 2(1), 021875 (2008).
[Crossref]

Ohguchi, O.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Pan, Y. L.

Prakash, J.

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref] [PubMed]

Reid, J. P.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[Crossref]

Reiss, D.

G. Wurm, J. Teiser, and D. Reiss, “Greenhouse and thermophoretic effects in dust layers: The missing link for lifting of dust on Mars,” Geophys. Res. Lett. 35(10), L10201 (2008).
[Crossref]

Rode, A. V.

Rose, P.

M. Esseling, P. Rose, C. Alpmann, and C. Denz, “Photophoretic trampoline—Interaction of single airborne absorbing droplets with light,” Appl. Phys. Lett. 101(13), 131115 (2012).
[Crossref]

Rubinsztein-Dunlop, H.

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Salazar, M.

Shvedov, V. G.

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

Teiser, J.

G. Wurm, J. Teiser, and D. Reiss, “Greenhouse and thermophoretic effects in dust layers: The missing link for lifting of dust on Mars,” Geophys. Res. Lett. 35(10), L10201 (2008).
[Crossref]

Ukita, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

Wang, Z.-Q.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Wei, X.-B.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Wei, Y.

Wills, J. B.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[Crossref]

Wu, X.

Wurm, G.

G. Wurm, J. Teiser, and D. Reiss, “Greenhouse and thermophoretic effects in dust layers: The missing link for lifting of dust on Mars,” Geophys. Res. Lett. 35(10), L10201 (2008).
[Crossref]

Zhang, P.

Zhang, Q.

Zhang, Z.

Zhong, M.-C.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Zhou, J.-H.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

M. Esseling, P. Rose, C. Alpmann, and C. Denz, “Photophoretic trampoline—Interaction of single airborne absorbing droplets with light,” Appl. Phys. Lett. 101(13), 131115 (2012).
[Crossref]

J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
[Crossref]

Chem. Phys. Lett. (1)

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[Crossref]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref] [PubMed]

Geophys. Res. Lett. (1)

G. Wurm, J. Teiser, and D. Reiss, “Greenhouse and thermophoretic effects in dust layers: The missing link for lifting of dust on Mars,” Geophys. Res. Lett. 35(10), L10201 (2008).
[Crossref]

J. Nanophot. (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophot. 2(1), 021875 (2008).
[Crossref]

Nat Commun. (1)

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Supplementary Material (3)

» Media 1: MP4 (428 KB)     
» Media 2: MP4 (1529 KB)     
» Media 3: MP4 (862 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Principle schematic of the simulation of a weakly focused optical field. (b) Simulated 2D light intensity distribution in the y-z plane (x = 0 mm) [15]. (c) Simulated light intensity distribution of one transverse section (z = 48.7 mm). (d) Measured light intensity distribution of one transverse section (z = 48.7 mm). (e) Light intensity distribution of the optical field surrounded by the black square frame in Fig. 1(b).
Fig. 2
Fig. 2 (a) Principle schematic of the setup trapping particles. L denotes lens (L1, focal length f1 = 25mm; L2, focal length f2 = 200 mm; L3, focal length f3 = 50 mm). C denotes circular aperture with a diameter of 6 mm. (b) (Media 1): The particles fall down from the upper part of the optical field into the lower part when the laser power is reduced. (c) The qualitative analysis about the changing of the particles’ positions. ‘G’ denotes the gravity of the particle. ‘S1’ and ‘S2’ denote the upward Stokes’ drag. ‘P1’ and ‘P1’ denote the photophoretic force. (c1) shows that, with high laser power, the particles are pushed up near the upper part of the optical field because ’S1’ is larger than ‘G’. (c2) shows that, with low power, the particles fall down near the lower part.
Fig. 3
Fig. 3 (Media 2) Horizontal views of the moving process of particles. The particles move up gradually into the upper part of optical field.
Fig. 4
Fig. 4 (a) - (c): Distribution of three kinds of particles in tapered-ring traps. The left pictures show the results observed from horizontal direction. The right pictures show the results observed simultaneously from vertical direction. (a1) and (a2) show the distribution of toner particles in the optical field. (b1) and (b2) show the distribution of black ink droplets. (c1) and (c2) show the distribution of iron micro-particle. (d) The image of toner particles under the electron microscope. (e) Analysis of the forces acting on trapped toner particles. (f) The image of iron particles under the electron microscope. (g) Analysis of the forces acting on iron particles.
Fig. 5
Fig. 5 (a) Principle schematic of the dual-beam system. (b) Agglomeration process of many particles. (c) (see the first half of Media 3): In the white circle, one micelle is spinning and its rotation plane is parallel to the paper. In addition, the other two micelles are marked by two red ellipses.

Tables (1)

Tables Icon

Table 1 Values of P T and P R when θ 1 = 0°, 30°, 60° and 90°

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( r i , z ) = 4 π 2 A 2 λ 2 z 2 | 0 R exp [ j k r 2 2 ( 1 z 1 f ) ] J 0 ( 2 π r r i λ z ) r d r | 2

Metrics