Abstract

We report a simplified model for the computation of light-fluorescence interactions within photonic crystal fibers (PCFs). It involved the plotting of ray trajectories confined by total internal reflection within a geometrically simplified PCF core. This was followed by the calculation of absorption and fluorescence emission at each point of reflection, which were subsequently summed and averaged over all the launched rays. The computation of these components for two specified wavelengths (peak excitation and emission) produced a dimensionless ratiometric relationship for varying concentrations of fluorescence dye. This hence eliminated the need for optical filters and minimized the effects of intensity fluctuations. Modeled results were demonstrated to concur well with that obtained experimentally for two PCFs with different microstructured cores.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber

Zhi-Li Li, Wen-Yuan Zhou, Ming-Ming Luo, Yan-Ge Liu, and Jian-Guo Tian
Opt. Express 23(8) 10413-10420 (2015)

All-fiber reflecting temperature probe based on the simplified hollow-core photonic crystal fiber filled with aqueous quantum dot solution

Jian Wu, Xiaojin Yin, Wenyuan Wang, Xueming Hong, Yu Du, Youfu Geng, and Xuejin Li
Appl. Opt. 55(5) 974-978 (2016)

Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions

Jesper B. Jensen, Lars H. Pedersen, Poul E. Hoiby, Lars B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, Danny Noordegraaf, Kristian Nielsen, A. Carlsen, and A. Bjarklev
Opt. Lett. 29(17) 1974-1976 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  2. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  3. O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
    [Crossref]
  4. A. S. J. Cerqueira, “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
    [Crossref]
  5. A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 21 (2012).
    [Crossref]
  6. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
    [Crossref] [PubMed]
  7. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  8. M. M. Tanya, B. Walter, F. Kentaro, C. B. Joanne, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [Crossref]
  9. X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt(II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
    [Crossref]
  10. X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
    [Crossref]
  11. X. Yu, Y. Zhang, Y. C. Kwok, and P. Shum, “Highly sensitive photonic crystal fiber based absorption spectroscopy,” Sens. Actuators B Chem. 145(1), 110–113 (2010).
    [Crossref]
  12. G. Pickrell, W. Peng, and A. Wang, “Random-hole optical fiber evanescent-wave gas sensing,” Opt. Lett. 29(13), 1476–1478 (2004).
    [Crossref] [PubMed]
  13. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and Modeling of a Photonic Crystal Fiber Gas Sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
    [Crossref] [PubMed]
  14. S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [Crossref] [PubMed]
  15. O. S. W. Gareth, G. E. Tijmen, J. R. Philip St, and C. J. Anita, “Spectrofluorimetry with attomole sensitivity in photonic crystal fibres,” Method App.l Fluoresc. 1(1), 015003 (2013).
    [Crossref]
  16. M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
    [Crossref] [PubMed]
  17. Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
    [Crossref]
  18. H. Nakazawa, M. Ishida, and K. Sawada, “Multimodal bio-image sensor for real-time proton and fluorescence imaging,” Sens. Actuators B Chem. 180, 14–20 (2013).
    [Crossref]
  19. K. Yamasaki, H. Nakazawa, N. Misawa, M. Ishida, and K. Sawada, “Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector,” Appl. Phys. Lett. 102(23), 233701 (2013).
    [Crossref]
  20. N. Hirokazu, Y. Keita, T. Takuya, A. Ippei, I. Makoto, and S. Kazuaki, “Improvement of the Detection Accuracy and Detection Limit of a Filter-less Fluorescence Detector,” Appl. Phys. Express 6(7), 077001 (2013).
    [Crossref]
  21. S. Chen, A. Rajagopal, and A. Scherer, “Filterless time-domain detection of one or more fluorophores,” (Google Patents, 2013).
  22. H. Wang, Y. Qi, T. J. Mountziaris, and C. D. Salthouse, “A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 85(5), 055003 (2014).
    [Crossref] [PubMed]
  23. C. D. Salthouse, R. Weissleder, and U. Mahmood, “Development of a time domain fluorimeter for fluorescent lifetime multiplexing analysis,” IEEE Trans. Biomed. Circuits Syst. 2(3), 204–211 (2008).
    [Crossref] [PubMed]
  24. A. P. Demchenko, “The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging,” J. Fluoresc. 20(5), 1099–1128 (2010).
    [Crossref] [PubMed]
  25. D. Yong, W. L. Ng, X. Yu, and C. C. Chan, “A compact opto-fluidic platform for chemical sensing with photonic crystal fibers,” Sens. Actuators A Phys. 191, 22–26 (2013).
    [Crossref]
  26. Y. Yuan and L. Ding, “Theoretical investigation for excitation light and fluorescence signal of fiber optical sensor using tapered fiber tip,” Opt. Express 19(22), 21515–21523 (2011).
    [Crossref] [PubMed]
  27. R. M. Chyad, M. Z. M. Jafri, K. N. Mutter, and K. Ibrahim, “Numerical ray tracing through a modified cladding fiber optic segment sensors,” Optik (Stuttg.) 123(10), 860–862 (2012).
    [Crossref]
  28. X. Yu, P. Shum, G. B. Ren, and N. Q. Ngo, “Photonic crystal fibers with high index infiltrations for refractive index sensing,” Opt. Commun. 281(18), 4555–4559 (2008).
    [Crossref]
  29. W. F. Love, L. J. Button, and R. E. Slovacek, “Optical Characteristics of Fiberoptic Evanescent Wave Sensors,” in Biosensors with Fiberoptics, D. Wise, and L. Wingard, Jr., eds. (Humana Press, 1991), pp. 139–180.
  30. M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
    [Crossref]
  31. R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [Crossref]
  32. M. Milosevic, “Anatomy of ATR Absorption,” in Internal Reflection and ATR Spectroscopy(John Wiley & Sons, Inc., 2012), pp. 67–78.
  33. R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spect. Acta Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
    [Crossref]
  34. S. Bidmanova, A. Hlavacek, J. Damborsky, and Z. Prokop, “Conjugation of 5(6)-carboxyfluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing,” Sens. Actuators B Chem. 161(1), 93–99 (2012).
    [Crossref]
  35. N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14(8), 1094–1096 (2002).
    [Crossref]

2014 (1)

H. Wang, Y. Qi, T. J. Mountziaris, and C. D. Salthouse, “A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 85(5), 055003 (2014).
[Crossref] [PubMed]

2013 (6)

D. Yong, W. L. Ng, X. Yu, and C. C. Chan, “A compact opto-fluidic platform for chemical sensing with photonic crystal fibers,” Sens. Actuators A Phys. 191, 22–26 (2013).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

O. S. W. Gareth, G. E. Tijmen, J. R. Philip St, and C. J. Anita, “Spectrofluorimetry with attomole sensitivity in photonic crystal fibres,” Method App.l Fluoresc. 1(1), 015003 (2013).
[Crossref]

H. Nakazawa, M. Ishida, and K. Sawada, “Multimodal bio-image sensor for real-time proton and fluorescence imaging,” Sens. Actuators B Chem. 180, 14–20 (2013).
[Crossref]

K. Yamasaki, H. Nakazawa, N. Misawa, M. Ishida, and K. Sawada, “Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector,” Appl. Phys. Lett. 102(23), 233701 (2013).
[Crossref]

N. Hirokazu, Y. Keita, T. Takuya, A. Ippei, I. Makoto, and S. Kazuaki, “Improvement of the Detection Accuracy and Detection Limit of a Filter-less Fluorescence Detector,” Appl. Phys. Express 6(7), 077001 (2013).
[Crossref]

2012 (3)

A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 21 (2012).
[Crossref]

R. M. Chyad, M. Z. M. Jafri, K. N. Mutter, and K. Ibrahim, “Numerical ray tracing through a modified cladding fiber optic segment sensors,” Optik (Stuttg.) 123(10), 860–862 (2012).
[Crossref]

S. Bidmanova, A. Hlavacek, J. Damborsky, and Z. Prokop, “Conjugation of 5(6)-carboxyfluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing,” Sens. Actuators B Chem. 161(1), 93–99 (2012).
[Crossref]

2011 (1)

2010 (3)

A. P. Demchenko, “The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging,” J. Fluoresc. 20(5), 1099–1128 (2010).
[Crossref] [PubMed]

A. S. J. Cerqueira, “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
[Crossref]

X. Yu, Y. Zhang, Y. C. Kwok, and P. Shum, “Highly sensitive photonic crystal fiber based absorption spectroscopy,” Sens. Actuators B Chem. 145(1), 110–113 (2010).
[Crossref]

2009 (1)

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt(II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

2008 (4)

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[Crossref]

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

C. D. Salthouse, R. Weissleder, and U. Mahmood, “Development of a time domain fluorimeter for fluorescent lifetime multiplexing analysis,” IEEE Trans. Biomed. Circuits Syst. 2(3), 204–211 (2008).
[Crossref] [PubMed]

X. Yu, P. Shum, G. B. Ren, and N. Q. Ngo, “Photonic crystal fibers with high index infiltrations for refractive index sensing,” Opt. Commun. 281(18), 4555–4559 (2008).
[Crossref]

2007 (3)

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[Crossref] [PubMed]

2006 (1)

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[Crossref]

2004 (1)

2003 (3)

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and Modeling of a Photonic Crystal Fiber Gas Sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[Crossref] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

2002 (1)

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

2001 (1)

M. M. Tanya, B. Walter, F. Kentaro, C. B. Joanne, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

1996 (1)

1995 (1)

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spect. Acta Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

1975 (1)

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Abshire, P.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[Crossref] [PubMed]

Afshar, S.

Anita, C. J.

O. S. W. Gareth, G. E. Tijmen, J. R. Philip St, and C. J. Anita, “Spectrofluorimetry with attomole sensitivity in photonic crystal fibres,” Method App.l Fluoresc. 1(1), 015003 (2013).
[Crossref]

Araújo, F. M.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Atkin, D. M.

Bidmanova, S.

S. Bidmanova, A. Hlavacek, J. Damborsky, and Z. Prokop, “Conjugation of 5(6)-carboxyfluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing,” Sens. Actuators B Chem. 161(1), 93–99 (2012).
[Crossref]

Birks, T. A.

Broderick, N. G. R.

M. M. Tanya, B. Walter, F. Kentaro, C. B. Joanne, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Broeng, J.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

Cerqueira, A. S. J.

A. S. J. Cerqueira, “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
[Crossref]

Chan, C. C.

D. Yong, W. L. Ng, X. Yu, and C. C. Chan, “A compact opto-fluidic platform for chemical sensing with photonic crystal fibers,” Sens. Actuators A Phys. 191, 22–26 (2013).
[Crossref]

Chyad, R. M.

R. M. Chyad, M. Z. M. Jafri, K. N. Mutter, and K. Ibrahim, “Numerical ray tracing through a modified cladding fiber optic segment sensors,” Optik (Stuttg.) 123(10), 860–862 (2012).
[Crossref]

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Cubillas, A. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Damborsky, J.

S. Bidmanova, A. Hlavacek, J. Damborsky, and Z. Prokop, “Conjugation of 5(6)-carboxyfluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing,” Sens. Actuators B Chem. 161(1), 93–99 (2012).
[Crossref]

Dandin, M.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[Crossref] [PubMed]

Demchenko, A. P.

A. P. Demchenko, “The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging,” J. Fluoresc. 20(5), 1099–1128 (2010).
[Crossref] [PubMed]

Ding, L.

Etzold, B. J. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Euser, T. G.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Ferreira, L. A.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Folken, J. R.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

Frazão, O.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Gareth, O. S. W.

O. S. W. Gareth, G. E. Tijmen, J. R. Philip St, and C. J. Anita, “Spectrofluorimetry with attomole sensitivity in photonic crystal fibres,” Method App.l Fluoresc. 1(1), 015003 (2013).
[Crossref]

Harris, J.

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Heiblum, M.

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Hirokazu, N.

N. Hirokazu, Y. Keita, T. Takuya, A. Ippei, I. Makoto, and S. Kazuaki, “Improvement of the Detection Accuracy and Detection Limit of a Filter-less Fluorescence Detector,” Appl. Phys. Express 6(7), 077001 (2013).
[Crossref]

Hlavacek, A.

S. Bidmanova, A. Hlavacek, J. Damborsky, and Z. Prokop, “Conjugation of 5(6)-carboxyfluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing,” Sens. Actuators B Chem. 161(1), 93–99 (2012).
[Crossref]

Ho, H. L.

Hoo, Y. L.

Ibrahim, K.

R. M. Chyad, M. Z. M. Jafri, K. N. Mutter, and K. Ibrahim, “Numerical ray tracing through a modified cladding fiber optic segment sensors,” Optik (Stuttg.) 123(10), 860–862 (2012).
[Crossref]

Ippei, A.

N. Hirokazu, Y. Keita, T. Takuya, A. Ippei, I. Makoto, and S. Kazuaki, “Improvement of the Detection Accuracy and Detection Limit of a Filter-less Fluorescence Detector,” Appl. Phys. Express 6(7), 077001 (2013).
[Crossref]

Ishida, M.

K. Yamasaki, H. Nakazawa, N. Misawa, M. Ishida, and K. Sawada, “Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector,” Appl. Phys. Lett. 102(23), 233701 (2013).
[Crossref]

H. Nakazawa, M. Ishida, and K. Sawada, “Multimodal bio-image sensor for real-time proton and fluorescence imaging,” Sens. Actuators B Chem. 180, 14–20 (2013).
[Crossref]

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[Crossref]

Jafri, M. Z. M.

R. M. Chyad, M. Z. M. Jafri, K. N. Mutter, and K. Ibrahim, “Numerical ray tracing through a modified cladding fiber optic segment sensors,” Optik (Stuttg.) 123(10), 860–862 (2012).
[Crossref]

Jin, W.

Joanne, C. B.

M. M. Tanya, B. Walter, F. Kentaro, C. B. Joanne, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Kazuaki, S.

N. Hirokazu, Y. Keita, T. Takuya, A. Ippei, I. Makoto, and S. Kazuaki, “Improvement of the Detection Accuracy and Detection Limit of a Filter-less Fluorescence Detector,” Appl. Phys. Express 6(7), 077001 (2013).
[Crossref]

Keita, Y.

N. Hirokazu, Y. Keita, T. Takuya, A. Ippei, I. Makoto, and S. Kazuaki, “Improvement of the Detection Accuracy and Detection Limit of a Filter-less Fluorescence Detector,” Appl. Phys. Express 6(7), 077001 (2013).
[Crossref]

Kentaro, F.

M. M. Tanya, B. Walter, F. Kentaro, C. B. Joanne, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Khairudin, N. A.

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt(II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

Knight, J. C.

Kubista, M.

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spect. Acta Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

Kwok, Y. C.

X. Yu, Y. Zhang, Y. C. Kwok, and P. Shum, “Highly sensitive photonic crystal fiber based absorption spectroscopy,” Sens. Actuators B Chem. 145(1), 110–113 (2010).
[Crossref]

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt(II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[Crossref]

Lopez-Amo, M.

A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 21 (2012).
[Crossref]

Mahmood, U.

C. D. Salthouse, R. Weissleder, and U. Mahmood, “Development of a time domain fluorimeter for fluorescent lifetime multiplexing analysis,” IEEE Trans. Biomed. Circuits Syst. 2(3), 204–211 (2008).
[Crossref] [PubMed]

Makoto, I.

N. Hirokazu, Y. Keita, T. Takuya, A. Ippei, I. Makoto, and S. Kazuaki, “Improvement of the Detection Accuracy and Detection Limit of a Filter-less Fluorescence Detector,” Appl. Phys. Express 6(7), 077001 (2013).
[Crossref]

Maruyama, Y.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[Crossref]

Misawa, N.

K. Yamasaki, H. Nakazawa, N. Misawa, M. Ishida, and K. Sawada, “Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector,” Appl. Phys. Lett. 102(23), 233701 (2013).
[Crossref]

Monro, T. M.

Mortensen, N. A.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

Mountziaris, T. J.

H. Wang, Y. Qi, T. J. Mountziaris, and C. D. Salthouse, “A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 85(5), 055003 (2014).
[Crossref] [PubMed]

Mutter, K. N.

R. M. Chyad, M. Z. M. Jafri, K. N. Mutter, and K. Ibrahim, “Numerical ray tracing through a modified cladding fiber optic segment sensors,” Optik (Stuttg.) 123(10), 860–862 (2012).
[Crossref]

Nakazawa, H.

K. Yamasaki, H. Nakazawa, N. Misawa, M. Ishida, and K. Sawada, “Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector,” Appl. Phys. Lett. 102(23), 233701 (2013).
[Crossref]

H. Nakazawa, M. Ishida, and K. Sawada, “Multimodal bio-image sensor for real-time proton and fluorescence imaging,” Sens. Actuators B Chem. 180, 14–20 (2013).
[Crossref]

Ng, W. L.

D. Yong, W. L. Ng, X. Yu, and C. C. Chan, “A compact opto-fluidic platform for chemical sensing with photonic crystal fibers,” Sens. Actuators A Phys. 191, 22–26 (2013).
[Crossref]

Ngo, N. Q.

X. Yu, P. Shum, G. B. Ren, and N. Q. Ngo, “Photonic crystal fibers with high index infiltrations for refractive index sensing,” Opt. Commun. 281(18), 4555–4559 (2008).
[Crossref]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[Crossref]

Nygren, J.

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spect. Acta Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

Peng, W.

Philip St, J. R.

O. S. W. Gareth, G. E. Tijmen, J. R. Philip St, and C. J. Anita, “Spectrofluorimetry with attomole sensitivity in photonic crystal fibres,” Method App.l Fluoresc. 1(1), 015003 (2013).
[Crossref]

Pickrell, G.

Pinto, A. M. R.

A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 21 (2012).
[Crossref]

Prokop, Z.

S. Bidmanova, A. Hlavacek, J. Damborsky, and Z. Prokop, “Conjugation of 5(6)-carboxyfluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing,” Sens. Actuators B Chem. 161(1), 93–99 (2012).
[Crossref]

Qi, Y.

H. Wang, Y. Qi, T. J. Mountziaris, and C. D. Salthouse, “A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 85(5), 055003 (2014).
[Crossref] [PubMed]

Ren, G. B.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[Crossref]

X. Yu, P. Shum, G. B. Ren, and N. Q. Ngo, “Photonic crystal fibers with high index infiltrations for refractive index sensing,” Opt. Commun. 281(18), 4555–4559 (2008).
[Crossref]

Richardson, D. J.

M. M. Tanya, B. Walter, F. Kentaro, C. B. Joanne, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Ruan, S. C.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. S. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[Crossref] [PubMed]

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Salthouse, C. D.

H. Wang, Y. Qi, T. J. Mountziaris, and C. D. Salthouse, “A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 85(5), 055003 (2014).
[Crossref] [PubMed]

C. D. Salthouse, R. Weissleder, and U. Mahmood, “Development of a time domain fluorimeter for fluorescent lifetime multiplexing analysis,” IEEE Trans. Biomed. Circuits Syst. 2(3), 204–211 (2008).
[Crossref] [PubMed]

Santos, J. L.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Sawada, K.

K. Yamasaki, H. Nakazawa, N. Misawa, M. Ishida, and K. Sawada, “Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector,” Appl. Phys. Lett. 102(23), 233701 (2013).
[Crossref]

H. Nakazawa, M. Ishida, and K. Sawada, “Multimodal bio-image sensor for real-time proton and fluorescence imaging,” Sens. Actuators B Chem. 180, 14–20 (2013).
[Crossref]

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[Crossref]

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Shi, C.

Shum, P.

X. Yu, Y. Zhang, Y. C. Kwok, and P. Shum, “Highly sensitive photonic crystal fiber based absorption spectroscopy,” Sens. Actuators B Chem. 145(1), 110–113 (2010).
[Crossref]

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt(II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[Crossref]

X. Yu, P. Shum, G. B. Ren, and N. Q. Ngo, “Photonic crystal fibers with high index infiltrations for refractive index sensing,” Opt. Commun. 281(18), 4555–4559 (2008).
[Crossref]

Sjöback, R.

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spect. Acta Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

Skovgaard, P. M. W.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

Smela, E.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[Crossref] [PubMed]

Sun, Y.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[Crossref]

Takao, H.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[Crossref]

Takuya, T.

N. Hirokazu, Y. Keita, T. Takuya, A. Ippei, I. Makoto, and S. Kazuaki, “Improvement of the Detection Accuracy and Detection Limit of a Filter-less Fluorescence Detector,” Appl. Phys. Express 6(7), 077001 (2013).
[Crossref]

Tanya, M. M.

M. M. Tanya, B. Walter, F. Kentaro, C. B. Joanne, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Tijmen, G. E.

O. S. W. Gareth, G. E. Tijmen, J. R. Philip St, and C. J. Anita, “Spectrofluorimetry with attomole sensitivity in photonic crystal fibres,” Method App.l Fluoresc. 1(1), 015003 (2013).
[Crossref]

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Walter, B.

M. M. Tanya, B. Walter, F. Kentaro, C. B. Joanne, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Wang, A.

Wang, D. N.

Wang, H.

H. Wang, Y. Qi, T. J. Mountziaris, and C. D. Salthouse, “A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 85(5), 055003 (2014).
[Crossref] [PubMed]

Warren-Smith, S. C.

Wasserscheid, P.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Weissleder, R.

C. D. Salthouse, R. Weissleder, and U. Mahmood, “Development of a time domain fluorimeter for fluorescent lifetime multiplexing analysis,” IEEE Trans. Biomed. Circuits Syst. 2(3), 204–211 (2008).
[Crossref] [PubMed]

Yamasaki, K.

K. Yamasaki, H. Nakazawa, N. Misawa, M. Ishida, and K. Sawada, “Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector,” Appl. Phys. Lett. 102(23), 233701 (2013).
[Crossref]

Yong, D.

D. Yong, W. L. Ng, X. Yu, and C. C. Chan, “A compact opto-fluidic platform for chemical sensing with photonic crystal fibers,” Sens. Actuators A Phys. 191, 22–26 (2013).
[Crossref]

Yu, X.

D. Yong, W. L. Ng, X. Yu, and C. C. Chan, “A compact opto-fluidic platform for chemical sensing with photonic crystal fibers,” Sens. Actuators A Phys. 191, 22–26 (2013).
[Crossref]

X. Yu, Y. Zhang, Y. C. Kwok, and P. Shum, “Highly sensitive photonic crystal fiber based absorption spectroscopy,” Sens. Actuators B Chem. 145(1), 110–113 (2010).
[Crossref]

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt(II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[Crossref]

X. Yu, P. Shum, G. B. Ren, and N. Q. Ngo, “Photonic crystal fibers with high index infiltrations for refractive index sensing,” Opt. Commun. 281(18), 4555–4559 (2008).
[Crossref]

Yuan, Y.

Zhang, Y.

X. Yu, Y. Zhang, Y. C. Kwok, and P. Shum, “Highly sensitive photonic crystal fiber based absorption spectroscopy,” Sens. Actuators B Chem. 145(1), 110–113 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

N. Hirokazu, Y. Keita, T. Takuya, A. Ippei, I. Makoto, and S. Kazuaki, “Improvement of the Detection Accuracy and Detection Limit of a Filter-less Fluorescence Detector,” Appl. Phys. Express 6(7), 077001 (2013).
[Crossref]

Appl. Phys. Lett. (1)

K. Yamasaki, H. Nakazawa, N. Misawa, M. Ishida, and K. Sawada, “Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector,” Appl. Phys. Lett. 102(23), 233701 (2013).
[Crossref]

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (2)

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[Crossref]

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

IEEE Trans. Biomed. Circuits Syst. (1)

C. D. Salthouse, R. Weissleder, and U. Mahmood, “Development of a time domain fluorimeter for fluorescent lifetime multiplexing analysis,” IEEE Trans. Biomed. Circuits Syst. 2(3), 204–211 (2008).
[Crossref] [PubMed]

IEEE Trans. Electron. Dev. (1)

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[Crossref]

J. Fluoresc. (1)

A. P. Demchenko, “The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging,” J. Fluoresc. 20(5), 1099–1128 (2010).
[Crossref] [PubMed]

J. Sens. (1)

A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 21 (2012).
[Crossref]

Lab Chip (1)

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Meas. Sci. Technol. (1)

M. M. Tanya, B. Walter, F. Kentaro, C. B. Joanne, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Method App.l Fluoresc. (1)

O. S. W. Gareth, G. E. Tijmen, J. R. Philip St, and C. J. Anita, “Spectrofluorimetry with attomole sensitivity in photonic crystal fibres,” Method App.l Fluoresc. 1(1), 015003 (2013).
[Crossref]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Yu, P. Shum, G. B. Ren, and N. Q. Ngo, “Photonic crystal fibers with high index infiltrations for refractive index sensing,” Opt. Commun. 281(18), 4555–4559 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optik (Stuttg.) (1)

R. M. Chyad, M. Z. M. Jafri, K. N. Mutter, and K. Ibrahim, “Numerical ray tracing through a modified cladding fiber optic segment sensors,” Optik (Stuttg.) 123(10), 860–862 (2012).
[Crossref]

Rep. Prog. Phys. (1)

A. S. J. Cerqueira, “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

H. Wang, Y. Qi, T. J. Mountziaris, and C. D. Salthouse, “A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 85(5), 055003 (2014).
[Crossref] [PubMed]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

D. Yong, W. L. Ng, X. Yu, and C. C. Chan, “A compact opto-fluidic platform for chemical sensing with photonic crystal fibers,” Sens. Actuators A Phys. 191, 22–26 (2013).
[Crossref]

Sens. Actuators B Chem. (4)

H. Nakazawa, M. Ishida, and K. Sawada, “Multimodal bio-image sensor for real-time proton and fluorescence imaging,” Sens. Actuators B Chem. 180, 14–20 (2013).
[Crossref]

S. Bidmanova, A. Hlavacek, J. Damborsky, and Z. Prokop, “Conjugation of 5(6)-carboxyfluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing,” Sens. Actuators B Chem. 161(1), 93–99 (2012).
[Crossref]

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt(II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

X. Yu, Y. Zhang, Y. C. Kwok, and P. Shum, “Highly sensitive photonic crystal fiber based absorption spectroscopy,” Sens. Actuators B Chem. 145(1), 110–113 (2010).
[Crossref]

Spect. Acta Mol. Biomol. Spectrosc. (1)

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spect. Acta Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

Other (3)

M. Milosevic, “Anatomy of ATR Absorption,” in Internal Reflection and ATR Spectroscopy(John Wiley & Sons, Inc., 2012), pp. 67–78.

W. F. Love, L. J. Button, and R. E. Slovacek, “Optical Characteristics of Fiberoptic Evanescent Wave Sensors,” in Biosensors with Fiberoptics, D. Wise, and L. Wingard, Jr., eds. (Humana Press, 1991), pp. 139–180.

S. Chen, A. Rajagopal, and A. Scherer, “Filterless time-domain detection of one or more fluorophores,” (Google Patents, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 3D schematics of optofluidic platform.
Fig. 2
Fig. 2 (a) Micrograph of dcPCF’s microstructure with its core highlighted by white circles. Corresponding (b) transverse and (c) longitudinal cross-section of dcPCF’s core, defining the coordinate system (in black and green) and launch parameters (in blue). The launched ray (in red) indicated has an initial spatial location of xPos = yPos = 0, tilt of 0° and launch angle of θSTART.
Fig. 3
Fig. 3 Path of ray (in red) through 3 discretized layers with differing nco, resulting in an incident angle at Layer 3-Top interface (αTop) and one at the Layer 1-Btm interface (αBtm), as well as a longitudinal displacement of Lz between the two incidences. Path of an intra-core reflected ray (in orange) is similarly indicated. (Note: Exterior of bend is towards the bottom, i.e. nco,1>nco,2>nco,3 and θ123.)
Fig. 4
Fig. 4 Path of ray (in red) undergoing (a) refraction and (b) reflection in a 3D-domain, launched at a tilt of ψ. Plane of launch (for (a)) or incidence (for (b)) and Plane of refraction is highlighted in blue and yellow, correspondingly.
Fig. 5
Fig. 5 Output spectrum of buffer (solid blue line) and 30µM CF (red dotted line) loaded dcPCF normalized to I0exc) and I(λexc) respectively.
Fig. 6
Fig. 6 Comparison of I(λems)/I(λexc) for (a) dcPCF and (a) scPCF. Solid lines represent that calculated from the theoretical ray-trace model, while crosses are for that obtained experimentally for bent (in blue) and straight (in red) PCFs. Insets: Corresponding micrographs of the PCFs’ transverse cross-sections.
Fig. 7
Fig. 7 Breakdown of calculated components for bent dcPCF (in blue) and scPCF (in grey) at ψ = 0° with respect to (a,b,c) θSTART and (d,e,f) CF concentration. Solid and dotted lines for 1-fabs plots correspond to that at λems and λexc.
Fig. 8
Fig. 8 Alternate view (90° counter-clockwise rotation about x-axis) of Fig. 4. Path of ray (in red) undergoing (a) refraction and (b) reflection in a 3D-domain, launched at a tilt of ψ. Plane of launch (for (a)) or incidence (for (b)) and Plane of refraction is highlighted in blue and yellow, correspondingly.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

n c o , b e n t = n c o ( 1 + x R b e n d )
θ 2 = sin 1 ( n 1 n 2 sin ( tan 1 ( tan ψ sin ζ ) ) )
L z , 2 = t L a y tan θ 2 cos ζ
θ 2 ' = tan 1 ( tan θ 2 cos ζ cos ψ 2 )
I ( λ e m s ) I ( λ e x c ) = I F l ( λ e m s ) + I 0 ( λ e m s ) I a b s ( λ e m s ) I F l ( λ e x c ) + I 0 ( λ e x c ) I a b s ( λ e x c ) = I F l , n o r m ( λ e m s ) + I 0 ( λ e m s ) I 0 ( λ e x c ) ( 1 f a b s , e m s ) I F l , n o r m ( λ e x c ) + ( 1 f a b s , e x c )
S r a y ( λ ) = c ε ( λ ) ϕ F l f F l , λ I 0 ( λ ) I 0 ( λ e x c ) cos α 0 F a b s P e m i t d δ
F a b s = P a b s c ε ( λ ) I 0 ( λ ) cos α = 2 cos α ( n r e l n r e l 2 1 ) ( 1 + 2 n r e l 2 sin 2 α 1 ( n r e l 2 + 1 ) sin 2 α 1 ) exp ( 2 δ d p )
d p = λ 2 π n m n r e l 2 sin 2 α 1
P e m i t = α c r i t π 2 cos 1 ( sin α c r i t sin α ) d P 2 d Ω sin α d α π ( 0 α c r i t d P 1 d Ω sin α d α + α c r i t π 2 d P 2 d Ω sin α d α + π 2 π d P 3 d Ω sin α d α )
f a b s = 0 P a b s d δ I 0 ( λ ) = 0 F a b s c ε ( λ ) I 0 ( λ ) cos α d δ I 0 ( λ ) = c ε ( λ ) cos α 0 F a b s d δ
S r a y , T o p B t m = S r a y , T o p 1 ( ( 1 f a b s , T o p ) ( 1 f a b s , B t m ) ) N Refl , T o p 1 ( ( 1 f a b s , T o p ) ( 1 f a b s , B t m ) ) + S r a y , B t m ( 1 f a b s , T o p ) 1 ( ( 1 f a b s , T o p ) ( 1 f a b s , B t m ) ) N Refl , B t m 1 ( ( 1 f a b s , T o p ) ( 1 f a b s , B t m ) )
S r a y , B t m O N L Y = S r a y , B t m 1 ( 1 f a b s , B t m ) N Refl,Btm 1 ( 1 f a b s , B t m )
I F l , n o r m = λ ( S r a y , T o p B t m or S r a y , B t m O N L Y )
1 f a b s , e m s = ( 1 f a b s , T o p ( λ e m s ) ) N R e f l , T o p ( 1 f a b s , B t m ( λ e m s ) ) N R e f l , B t m
1 f a b s , e x c = ( 1 f a b s , T o p ( λ e x c ) ) N R e f l , T o p ( 1 f a b s , B t m ( λ e x c ) ) N R e f l , B t m
I ( λ e m s ) I ( λ e x c ) = I F l , n o r m ( λ e m s ) I F l , n o r m ( λ e x c ) = f F l , λ e m s f F l , λ e x c
A = t L a y cos ψ
B = L z , 1 = t L a y cos ψ tan θ S T A R T = t L a y tan θ 1 cos ζ
C = t L a y tan ψ
D = ζ = tan 1 ( C B ) = tan 1 ( sin ψ tan θ S T A R T )
E = t L a y tan ψ sin ζ = t L a y tan θ 1
F = L z , 2 = t L a y tan θ 2 cos ζ
G = t L a y tan θ 2 sin ζ
H = ψ 2 = tan 1 ( G t L a y ) = tan 1 ( tan θ 2 sin ζ )
I = t L a y cos ψ 2
J = θ 2 ' = tan 1 ( F I ) = tan 1 ( tan θ 2 cos ζ cos ψ 2 )
d P 1 d Ω = 4 n r e l 3 cos 2 α ( 1 ( 1 n r e l 2 sin 2 α + n r e l cos α ) 2 ) ( 1 ( n r e l 1 n r e l 2 sin 2 α + cos α ) 2 ) . c o n s t
d P 2 d Ω = 4 n r e l 3 cos 2 α n r e l 2 1 ( 1 + 2 n r e l 2 sin 2 α 1 ( n r e l 2 + 1 ) sin 2 α 1 ) exp ( 2 δ d p ) . c o n s t
d P 3 d Ω = ( 2 + r 2 + r / / 2 + 2 ( r r / / cos 2 α ) cos ( 2 n m 2 π λ δ cos α ) ) . c o n s t

Metrics