Abstract

This paper reports thin, transparent, and soft displays based on polymer waveguides that are compliant with curvilinear interfaces. In order to prove a feasibility of optical waveguide for a flexible display, we suggest the waveguide fabricated by a multi-step lithography process using two photo-curable pre-polymers with different refractive index. The displays are composed of light sources, polymer waveguides, and scatter patterns. The light signal propagating through the waveguides forms images of the scatter patterns by deflecting the light signals to outer surface. The scatter patterns are configured to a seven-segment. The seven-segment design with a switching methodology of the light sources contributes to selectively representing all decimal numbers from 0 to 9 by combination of activated segments. For a large area display based on the proposed methodology, a single light source interconnected to multi-waveguide section is integrated with a QWERTY key pad design. The display shows high transparency and flexibility without visual distortion.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process

R. Bruck, P. Muellner, N. Kataeva, A. Koeck, S. Trassl, V. Rinnerbauer, K. Schmidegg, and R. Hainberger
Appl. Opt. 52(19) 4510-4514 (2013)

Thin liquid-crystal display backlight system with highly scattering optical transmission polymers

Akihiro Tagaya, Michio Nagai, Yasuhiro Koike, and Kazuaki Yokoyama
Appl. Opt. 40(34) 6274-6280 (2001)

Graphene oxide-based waveguide polariser: From thin film to quasi-bulk

W. H. Lim, Y. K. Yap, W. Y. Chong, C. H. Pua, N. M. Huang, R. M. De La Rue, and H. Ahmad
Opt. Express 22(9) 11090-11098 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  2. S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photon. Technol. Lett. 24(10), 845–847 (2012).
  3. O. K. Kwon, Y. S. Beak, Y. C. Chung, and H. Park, “Proposal and analysis of distributed reflector-laser diode integrated with an electroabsorption modulator,” ETRI J. 35(3), 459–468 (2013).
    [Crossref]
  4. Y. Kim, S. Park, S. K. Park, S. Yun, K. U. Kyung, and K. Sun, “Transparent and flexible force sensor array based on optical waveguide,” Opt. Express 20(13), 14486–14493 (2012).
    [Crossref] [PubMed]
  5. B.-J. Cheon, J.-W. Kim, and M.-C. Oh, “Plastic optical touch panels for large-scale flexible display,” Opt. Express 21(4), 4734–4739 (2013).
    [Crossref] [PubMed]
  6. Y. Inada, Y. Nagai, and I. Fujieda, “Edge-lit backlight utilizing a laser diode and an optical fiber,” Proc. Of the 14th International Display Workshops,” IDW 07(2), 705–708 (2007).
  7. A. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009).
    [Crossref] [PubMed]
  8. Y. Okuda and I. Fujieda, “Polymer waveguide technology for flexible display applications,” Proc. SPIE 8280, 82800W (2012).
    [Crossref]
  9. M. L. Piao and N. Kim, “Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer,” Appl. Opt. 53(10), 2180–2186 (2014).
    [Crossref] [PubMed]
  10. A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, “Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays,” Opt. Commun. 330, 45–48 (2014).
    [Crossref]
  11. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12(12), 2901–2908 (1973).
    [Crossref] [PubMed]
  12. M.-C. Oh, C. Zhang, H.-J. Lee, W. H. Steier, and H. R. Fetterman, “Loss-loss interconnection between electrooptic and passive polymer waveguides with a vertical taper,” IEEE Photon. Technol. Lett. 9(14), 1121–1123 (2002).

2014 (2)

M. L. Piao and N. Kim, “Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer,” Appl. Opt. 53(10), 2180–2186 (2014).
[Crossref] [PubMed]

A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, “Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays,” Opt. Commun. 330, 45–48 (2014).
[Crossref]

2013 (2)

O. K. Kwon, Y. S. Beak, Y. C. Chung, and H. Park, “Proposal and analysis of distributed reflector-laser diode integrated with an electroabsorption modulator,” ETRI J. 35(3), 459–468 (2013).
[Crossref]

B.-J. Cheon, J.-W. Kim, and M.-C. Oh, “Plastic optical touch panels for large-scale flexible display,” Opt. Express 21(4), 4734–4739 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Okuda and I. Fujieda, “Polymer waveguide technology for flexible display applications,” Proc. SPIE 8280, 82800W (2012).
[Crossref]

Y. Kim, S. Park, S. K. Park, S. Yun, K. U. Kyung, and K. Sun, “Transparent and flexible force sensor array based on optical waveguide,” Opt. Express 20(13), 14486–14493 (2012).
[Crossref] [PubMed]

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photon. Technol. Lett. 24(10), 845–847 (2012).

2009 (1)

2007 (1)

Y. Inada, Y. Nagai, and I. Fujieda, “Edge-lit backlight utilizing a laser diode and an optical fiber,” Proc. Of the 14th International Display Workshops,” IDW 07(2), 705–708 (2007).

2002 (2)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

M.-C. Oh, C. Zhang, H.-J. Lee, W. H. Steier, and H. R. Fetterman, “Loss-loss interconnection between electrooptic and passive polymer waveguides with a vertical taper,” IEEE Photon. Technol. Lett. 9(14), 1121–1123 (2002).

1973 (1)

Bathiche, S.

Beak, Y. S.

O. K. Kwon, Y. S. Beak, Y. C. Chung, and H. Park, “Proposal and analysis of distributed reflector-laser diode integrated with an electroabsorption modulator,” ETRI J. 35(3), 459–468 (2013).
[Crossref]

Cheon, B.-J.

Chung, Y. C.

O. K. Kwon, Y. S. Beak, Y. C. Chung, and H. Park, “Proposal and analysis of distributed reflector-laser diode integrated with an electroabsorption modulator,” ETRI J. 35(3), 459–468 (2013).
[Crossref]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Emerton, N.

Fetterman, H. R.

M.-C. Oh, C. Zhang, H.-J. Lee, W. H. Steier, and H. R. Fetterman, “Loss-loss interconnection between electrooptic and passive polymer waveguides with a vertical taper,” IEEE Photon. Technol. Lett. 9(14), 1121–1123 (2002).

Fujieda, I.

Y. Okuda and I. Fujieda, “Polymer waveguide technology for flexible display applications,” Proc. SPIE 8280, 82800W (2012).
[Crossref]

Y. Inada, Y. Nagai, and I. Fujieda, “Edge-lit backlight utilizing a laser diode and an optical fiber,” Proc. Of the 14th International Display Workshops,” IDW 07(2), 705–708 (2007).

Inada, Y.

Y. Inada, Y. Nagai, and I. Fujieda, “Edge-lit backlight utilizing a laser diode and an optical fiber,” Proc. Of the 14th International Display Workshops,” IDW 07(2), 705–708 (2007).

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Kakinoki, Y.

A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, “Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays,” Opt. Commun. 330, 45–48 (2014).
[Crossref]

Kato, Y.

A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, “Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays,” Opt. Commun. 330, 45–48 (2014).
[Crossref]

Katsuyama, T.

A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, “Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays,” Opt. Commun. 330, 45–48 (2014).
[Crossref]

Kim, J.-W.

B.-J. Cheon, J.-W. Kim, and M.-C. Oh, “Plastic optical touch panels for large-scale flexible display,” Opt. Express 21(4), 4734–4739 (2013).
[Crossref] [PubMed]

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photon. Technol. Lett. 24(10), 845–847 (2012).

Kim, N.

Kim, Y.

Kwon, O. K.

O. K. Kwon, Y. S. Beak, Y. C. Chung, and H. Park, “Proposal and analysis of distributed reflector-laser diode integrated with an electroabsorption modulator,” ETRI J. 35(3), 459–468 (2013).
[Crossref]

Kyung, K. U.

Large, T.

Lee, H.-J.

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photon. Technol. Lett. 24(10), 845–847 (2012).

M.-C. Oh, C. Zhang, H.-J. Lee, W. H. Steier, and H. R. Fetterman, “Loss-loss interconnection between electrooptic and passive polymer waveguides with a vertical taper,” IEEE Photon. Technol. Lett. 9(14), 1121–1123 (2002).

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Morimoto, R.

A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, “Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays,” Opt. Commun. 330, 45–48 (2014).
[Crossref]

Nagai, Y.

Y. Inada, Y. Nagai, and I. Fujieda, “Edge-lit backlight utilizing a laser diode and an optical fiber,” Proc. Of the 14th International Display Workshops,” IDW 07(2), 705–708 (2007).

Nakao, A.

A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, “Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays,” Opt. Commun. 330, 45–48 (2014).
[Crossref]

Noh, Y.-O.

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photon. Technol. Lett. 24(10), 845–847 (2012).

Ogawa, K.

A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, “Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays,” Opt. Commun. 330, 45–48 (2014).
[Crossref]

Oh, M.-C.

B.-J. Cheon, J.-W. Kim, and M.-C. Oh, “Plastic optical touch panels for large-scale flexible display,” Opt. Express 21(4), 4734–4739 (2013).
[Crossref] [PubMed]

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photon. Technol. Lett. 24(10), 845–847 (2012).

M.-C. Oh, C. Zhang, H.-J. Lee, W. H. Steier, and H. R. Fetterman, “Loss-loss interconnection between electrooptic and passive polymer waveguides with a vertical taper,” IEEE Photon. Technol. Lett. 9(14), 1121–1123 (2002).

Okuda, Y.

Y. Okuda and I. Fujieda, “Polymer waveguide technology for flexible display applications,” Proc. SPIE 8280, 82800W (2012).
[Crossref]

Park, H.

O. K. Kwon, Y. S. Beak, Y. C. Chung, and H. Park, “Proposal and analysis of distributed reflector-laser diode integrated with an electroabsorption modulator,” ETRI J. 35(3), 459–468 (2013).
[Crossref]

Park, S.

Park, S. K.

Park, S.-H.

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photon. Technol. Lett. 24(10), 845–847 (2012).

Piao, M. L.

Steier, W. H.

M.-C. Oh, C. Zhang, H.-J. Lee, W. H. Steier, and H. R. Fetterman, “Loss-loss interconnection between electrooptic and passive polymer waveguides with a vertical taper,” IEEE Photon. Technol. Lett. 9(14), 1121–1123 (2002).

Sun, K.

Torge, R.

Travis, A.

Ulrich, R.

Yun, S.

Zhang, C.

M.-C. Oh, C. Zhang, H.-J. Lee, W. H. Steier, and H. R. Fetterman, “Loss-loss interconnection between electrooptic and passive polymer waveguides with a vertical taper,” IEEE Photon. Technol. Lett. 9(14), 1121–1123 (2002).

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Appl. Opt. (2)

ETRI J. (1)

O. K. Kwon, Y. S. Beak, Y. C. Chung, and H. Park, “Proposal and analysis of distributed reflector-laser diode integrated with an electroabsorption modulator,” ETRI J. 35(3), 459–468 (2013).
[Crossref]

IDW (1)

Y. Inada, Y. Nagai, and I. Fujieda, “Edge-lit backlight utilizing a laser diode and an optical fiber,” Proc. Of the 14th International Display Workshops,” IDW 07(2), 705–708 (2007).

IEEE Photon. Technol. Lett. (2)

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photon. Technol. Lett. 24(10), 845–847 (2012).

M.-C. Oh, C. Zhang, H.-J. Lee, W. H. Steier, and H. R. Fetterman, “Loss-loss interconnection between electrooptic and passive polymer waveguides with a vertical taper,” IEEE Photon. Technol. Lett. 9(14), 1121–1123 (2002).

Opt. Commun. (1)

A. Nakao, R. Morimoto, Y. Kato, Y. Kakinoki, K. Ogawa, and T. Katsuyama, “Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays,” Opt. Commun. 330, 45–48 (2014).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

Y. Okuda and I. Fujieda, “Polymer waveguide technology for flexible display applications,” Proc. SPIE 8280, 82800W (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Configuration of the proposed optical waveguide based thin film display: an illustrated unit of the optical waveguide display (a) and an illustrated cross-section of the waveguide across an A-B line (b).
Fig. 2
Fig. 2 A schematic diagram of optical waveguide structure for 7-segment display. The display represents “3”, when the channel 1, 2, 4, 6, and 7 are activated.
Fig. 3
Fig. 3 Fabrication process of the optical waveguide display.
Fig. 4
Fig. 4 A mask layout (a) and a photograph of the fabricated display for seven-segment (b), and photographs of curved section in the optical waveguide (c) and scatter patterns composed of hemispherical dot array (d). The inset of (d) shows a cross-section of a dot in the scatter pattern.
Fig. 5
Fig. 5 Length dependent insertion loss profiles of the optical waveguides.
Fig. 6
Fig. 6 Photographs of the seven-segment display representing five different decimal numbers.
Fig. 7
Fig. 7 A schematic diagram of a large area visual display for QWERTY keypad.
Fig. 8
Fig. 8 A photograph of a thin-film large area visual display representing QWERTY key pad.

Metrics