Abstract

We report on the monolithic integration of waveguide embedded, electro–optical tunable Bragg gratings in lithium niobate fabricated by direct femtosecond laser writing. The hybrid design that consists of a circular type-II waveguide and a multiscan type-I Bragg grating exhibits low loss ordinary and extraordinary polarized guiding as well as narrowband reflections in the c-band of optical communications. High bandwidth tunability of more than a peak width and nearly preserved electro–optic coefficients of r13 = 7.59pm V−1 and r33 = 23.21 pm V−1 are demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz
Opt. Express 20(24) 26922-26928 (2012)

Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime

Christopher Miese, Michael J. Withford, and Alexander Fuerbach
Opt. Express 19(20) 19542-19550 (2011)

Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate

W. Jin, K. S. Chiang, and Q. Liu
Opt. Express 16(25) 20409-20417 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref] [PubMed]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  3. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
    [Crossref]
  4. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, 2012).
    [Crossref]
  5. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8, 251–275 (2014).
    [Crossref]
  6. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
    [Crossref]
  7. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [Crossref]
  8. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
    [Crossref]
  9. A. Rdenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16, 13979–13989 (2008).
    [Crossref]
  10. A. Rodenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110 (2009).
    [Crossref]
  11. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2006).
    [Crossref]
  12. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
    [Crossref]
  13. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
    [Crossref]
  14. W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20, 26922–26928 (2012).
    [Crossref] [PubMed]
  15. R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. Vzquez de Aldana, and F. Chen, “Femtosecond laser micromachining of lithium niobate depressed cladding waveguides,” Opt. Mater. Express 3, 1378–1384 (2013).
    [Crossref]
  16. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248–2250 (2005).
    [Crossref] [PubMed]
  17. H. Liu, Y. Jia, J. R. Vzquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20, 18620–18629 (2012).
    [Crossref] [PubMed]
  18. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express 22, 5177–5182 (2014).
    [Crossref] [PubMed]
  19. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4, 790–797 (2014).
    [Crossref]
  20. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
    [Crossref] [PubMed]
  21. R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
    [Crossref]
  22. G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett. 37, 491–493 (2012).
    [Crossref] [PubMed]
  23. S. Gross, M. Ams, D. G. Lancaster, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN,” Opt. Lett. 37, 3999–4001 (2012).
    [Crossref] [PubMed]
  24. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20, 3832–3843 (2012).
    [Crossref] [PubMed]
  25. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
    [Crossref] [PubMed]
  26. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [Crossref]
  27. Z. Toroker and M. Horowitz, “Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 448–457 (2008).
    [Crossref]
  28. A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vzquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35, 330–332 (2010).
    [Crossref] [PubMed]
  29. S. H. Lee, S. H. Kim, K. H. Kim, M. H. Lee, and E.-H. Lee, “A novel method for measuring continuous dispersion spectrum of electro-optic coefficients of nonlinear materials,” Opt. Express 17, 9828–9833 (2009).
    [Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (5)

2011 (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

2010 (1)

2009 (3)

S. H. Lee, S. H. Kim, K. H. Kim, M. H. Lee, and E.-H. Lee, “A novel method for measuring continuous dispersion spectrum of electro-optic coefficients of nonlinear materials,” Opt. Express 17, 9828–9833 (2009).
[Crossref] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[Crossref]

A. Rodenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110 (2009).
[Crossref]

2008 (4)

2007 (2)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

2006 (3)

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2006).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

2005 (2)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

1996 (1)

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Ams, M.

An, Q.

Benayas, A.

Bennion, I.

Bookey, H.

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

Bookey, H. T.

Brown, G.

Burghoff, J.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2006).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]

Campbell, S.

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

Cantelar, E.

Castillo-Vega, G. R.

Cerullo, G.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, 2012).
[Crossref]

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8, 251–275 (2014).
[Crossref]

R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. Vzquez de Aldana, and F. Chen, “Femtosecond laser micromachining of lithium niobate depressed cladding waveguides,” Opt. Mater. Express 3, 1378–1384 (2013).
[Crossref]

H. Liu, Y. Jia, J. R. Vzquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20, 18620–18629 (2012).
[Crossref] [PubMed]

A. Rodenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110 (2009).
[Crossref]

Cheng, Y.

Davis, K. M.

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8, 251–275 (2014).
[Crossref]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[Crossref]

Denz, C.

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Fuerbach, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]

Gross, S.

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2006).
[Crossref]

He, F.

He, R.

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Herman, P.

Herrmann, J.

Hibino, Y.

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Hirao, K.

Horn, W.

Horowitz, M.

Imbrock, J.

Jacinto, C.

Jaque, D.

Jaque, F.

Jha, A.

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

Jia, Y.

Jipa, F.

Kaminskii, A. A.

Kar, A.

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

Kar, A. K.

Khrushchev, I.

Kim, K. H.

Kim, S. H.

Kohtoku, M.

Kroesen, S.

Lamela, J.

Lancaster, D. G.

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[Crossref]

Lee, E.-H.

Lee, M. H.

Lee, S. H.

Liao, Y.

Liu, H.

Maestro, L. M.

A. Rodenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110 (2009).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Mezentsev, V.

Midorikawa, K.

Mitchell, J.

Miura, K.

Monro, T. M.

Nasu, Y.

Nejadmalayeri, A. H.

Nolte, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2006).
[Crossref]

Okhrimchuk, A.

Okhrimchuk, A. G.

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[Crossref]

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, 2012).
[Crossref]

Pavel, N.

Psaila, N.

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

Psaila, N. D.

Rademaker, K.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Ramirez, M.

A. Rodenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110 (2009).
[Crossref]

Ramponi, R.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, 2012).
[Crossref]

Rdenas, A.

Reid, D.

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Rodenas, A.

A. Rodenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110 (2009).
[Crossref]

Roso, L.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vzquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35, 330–332 (2010).
[Crossref] [PubMed]

A. Rodenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110 (2009).
[Crossref]

Ruske, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Salamu, G.

Shen, S.

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

Shestakov, A.

Shestakov, A. V.

Silva, W. F.

Song, J.

Sugimoto, N.

Sugioka, K.

Sun, H.

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Thomson, R.

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

Thomson, R. R.

Torchia, G. A.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vzquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35, 330–332 (2010).
[Crossref] [PubMed]

A. Rodenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110 (2009).
[Crossref]

Toroker, Z.

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2006).
[Crossref]

Vzquez de Aldana, J. R.

Wang, X.

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Withford, M. J.

Xu, J.

Xu, Z.

Zamfirescu, M.

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Zhou, Z.

Appl. Phys. A (3)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2006).
[Crossref]

Appl. Phys. Lett. (1)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]

Appl. Surf. Sci. (1)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Thomson, H. Bookey, N. Psaila, S. Campbell, D. Reid, S. Shen, A. Jha, and A. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515–1517 (2006).
[Crossref]

J. Appl. Phys. (1)

A. Rodenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110 (2009).
[Crossref]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8, 251–275 (2014).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref] [PubMed]

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett. 37, 491–493 (2012).
[Crossref] [PubMed]

S. Gross, M. Ams, D. G. Lancaster, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN,” Opt. Lett. 37, 3999–4001 (2012).
[Crossref] [PubMed]

Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
[Crossref] [PubMed]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vzquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35, 330–332 (2010).
[Crossref] [PubMed]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248–2250 (2005).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Phys. Status Solidi A (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208, 276–283 (2011).
[Crossref]

Other (1)

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the experimental setup for direct integration and characterization of waveguide embedded Bragg gratings (WBG) in LiNbO3. TLS: tunable laser source; PP: pulse picker, CAM: camera, HVA: high voltage amplifier. (b) Extraordinary polarized mode of a circular waveguide structure with a diameter of 15 μm. (c) Top view of the multiscan Bragg grating with a period of Λ = 704 nm, where the upper and lower waveguide lines are omitted for clear imaging. (d) Polished cross section of a WBG with integrated electrodes.
Fig. 2
Fig. 2 (first row) Optical microscope images of the front facet of different two–dimensional waveguide structures in lithium niobate referred to as (a1) double–, (b1) quad–, (c1) rectangular–, (d1) circular– and (e1) closed–circular waveguide. Corresponding mode profiles and insertion loss for (second row) ordinary-, and (third row) extraordinary polarization at λ = 1.55 μm, respectively. Symmetric single mode transmission with an insertion loss of 4.81 dB and nearly perfect mode–circularity of 99.5 % is achieved for the proposed closed–circular waveguide design and extraordinary polarization.
Fig. 3
Fig. 3 Reflection spectra of a 0.5 mm long Bragg grating embedded into a 10 mm long closed–circular waveguide for (a) ordinary-, and (b) extraordinary input polarization. The embedded character is demonstrated by probing the sample from opposite sides denoted as front–, and back–coupling. (c) Calculated refractive index modulation as a function of the pulse energy used for the multiscan Bragg gratings. It can be seen that the operation window is extremely narrow and too high pulse energies cause a derogated power transmission due to the starting filamentation process.
Fig. 4
Fig. 4 Electro–optic tuning of a 1 mm long WBG. (a) A maximum spectral tuning of more than a peak width is achieved with an applied voltage of ±840 V for p–polarized light. The spectral characteristics are preserved to a high degree indicating a uniform field distribution and pure single–mode propagation. (b) Relative shift of the central Bragg reflection maxima for s–, (ordinary) and p–polarized light (extraordinary). Nearly preserved electro–optic coefficients of r13 = 7.59 pm V−1 and r33 = 23.21 pm V−1 are obtained with a perfectly linear response. (b-inset) Frequency test of the device to show high bandwidth operation.

Metrics