Abstract

The liquid level detection principle of cladding mode frustrated total internal reflection (CMFTIR) effect is proposed. The significant enhancement of CMFTIR effect is realized through macro-bend coupling system in which the dark-field coupling phenomenon between two multimode polymer optic fibers is observed through experiment. Especially twisted macro-bend coupling structure (TMBCS) is adopted to achieve stable coupling of two naked POF. The testing result showed that the dark-filed forward coupling efficiency reached 2‰ and the extinction ratio of the liquid level probe reached 4.18dB. Compared with existing optical fiber liquid level sensors, the TMBCS probe is simpler, robuster, and cheaper. In addition, the TMBCS has the potential for displacement or stress sensing.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Twisted macro-bend coupling based three-dimensional displacement measurement sensor using polymer fiber

Abdul Ghaffar, WenYi Liu, Hou Yulong, Hui-Xin Zhang, GaoWan Jia, Pinggang Jia, Mujahid Mehdi, and Sadam Hussain
OSA Continuum 2(9) 2773-2782 (2019)

All-fiber, thermo-optic liquid level sensor

Borut Preložnik, Dusan Gleich, and Denis Donlagic
Opt. Express 26(18) 23518-23533 (2018)

Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings

Carlos A. F. Marques, Gang-Ding Peng, and David J. Webb
Opt. Express 23(5) 6058-6072 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sens. Actuators A Phys. 152(2), 248–251 (2009).
    [Crossref]
  2. X. Dong and R. Zhao, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
    [Crossref]
  3. X. Dong and R. Zhao, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010).
    [Crossref]
  4. X. Dong, W. Liu, and R. Zhao, “Liquid-level sensor based on tapered chirped fiber grating,” Sci. China Technol. Sci. 56(2), 471–474 (2013).
    [Crossref]
  5. D. S. Montero, C. Vázquez, I. Möllers, J. Arrúe, and D. Jäger, “A self-referencing intensity based polymer optical fiber sensor for liquid detection,” Sensors 9(8), 6446–6455 (2009).
    [Crossref] [PubMed]
  6. Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
    [Crossref] [PubMed]
  7. M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
    [Crossref]
  8. H. Golnabi, “Design and operation of a fiber optic sensor for liquid level detection,” Opt. Lasers Eng. 41(5), 801–812 (2004).
    [Crossref]
  9. M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46(6), 520–522 (2005).
    [Crossref]
  10. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62(11), 1267–1277 (1972).
    [Crossref] [PubMed]
  11. A. H. Cherin and E. J. Murphy, “Quasi-ray analysis of crosstalk between multimode optical fibers,” Bell Syst. Tech. J. 54(1), 17–45 (1975).
    [Crossref]
  12. D. Irawan, J. Saktioto, Ali, and M. Fadhali, “Birefringence analysis of directional fiber coupler induced by fusion and coupling parameters,” Optik 124(17), 3063–3066 (2013).
    [Crossref]
  13. M. Yasin, S. W. Harun, Samian, Kusminarto, and H. Ahmad, “Simple design of optical fiber displacement sensor using a multimode fiber coupler,” Laser Phys. 19(7), 1446–1449 (2009).
    [Crossref]
  14. D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,” Appl. Opt. 11(11), 2506–2513 (1972).
    [Crossref] [PubMed]
  15. J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IET Optoelectron. 145(6), 313–318 (1998).
    [Crossref]
  16. C. Zhao, L. Ye, J. Ge, J. Zou, and X. Yu, “Novel light-leaking optical fiber liquid-level sensor for aircraft fuel gauging,” Opt. Eng. 52(1), 014402 (2013).
    [Crossref]
  17. B. Cheng and X. Lu, “Analysis of power transfer characteristics among many parallel optical fibers,” Acta Photon. Sinica. 35(1), 29–32 (2006).
  18. W. P. Huang and J. W. Mu, “Complex coupled-mode theory for optical waveguides,” Opt. Express 17(21), 19134–19152 (2009).
    [Crossref] [PubMed]
  19. D. Donlagic, “A low bending loss multimode fiber transmission system,” Opt. Express 17(24), 22081–22095 (2009).
    [Crossref] [PubMed]
  20. F. El-Diasty, H. A. El-Hennawi, and M. A. Soliman, “Chromatic and opto-mechanical dispersion of some characteristic parameters of optical fiber undergoing macrobending,” Opt. Commun. 267(2), 394–401 (2006).
    [Crossref]
  21. T. Z. N. Sokkar, W. A. Ramadan, M. A. Shams El-Din, H. H. Wahba, and S. S. Aboleneen, “Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber,” Opt. Lasers Eng. 53, 133–141 (2014).
    [Crossref]
  22. G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42(6), 997–1002 (2003).
    [Crossref] [PubMed]
  23. I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
    [Crossref]
  24. A. A. Boechat, D. Su, D. R. Hall, and J. D. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30(3), 321–327 (1991).
    [Crossref] [PubMed]
  25. G. Betta, A. Pietrosant, and A. Scaglione, “A digital level transducer based on optical fiber,” in Instrumentation and Measurement Technology Conference, USA, 24–26 Apr 1995.
    [Crossref]
  26. M. Lomer, A. Quintela, M. Lopez-Amo, J. Zubia, and J. M. Lopez-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
    [Crossref]
  27. K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17(5), 998–1004 (2006).
    [Crossref]
  28. B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

2014 (1)

T. Z. N. Sokkar, W. A. Ramadan, M. A. Shams El-Din, H. H. Wahba, and S. S. Aboleneen, “Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber,” Opt. Lasers Eng. 53, 133–141 (2014).
[Crossref]

2013 (3)

X. Dong, W. Liu, and R. Zhao, “Liquid-level sensor based on tapered chirped fiber grating,” Sci. China Technol. Sci. 56(2), 471–474 (2013).
[Crossref]

D. Irawan, J. Saktioto, Ali, and M. Fadhali, “Birefringence analysis of directional fiber coupler induced by fusion and coupling parameters,” Optik 124(17), 3063–3066 (2013).
[Crossref]

C. Zhao, L. Ye, J. Ge, J. Zou, and X. Yu, “Novel light-leaking optical fiber liquid-level sensor for aircraft fuel gauging,” Opt. Eng. 52(1), 014402 (2013).
[Crossref]

2012 (1)

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

2011 (1)

2010 (1)

X. Dong and R. Zhao, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010).
[Crossref]

2009 (6)

D. S. Montero, C. Vázquez, I. Möllers, J. Arrúe, and D. Jäger, “A self-referencing intensity based polymer optical fiber sensor for liquid detection,” Sensors 9(8), 6446–6455 (2009).
[Crossref] [PubMed]

K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sens. Actuators A Phys. 152(2), 248–251 (2009).
[Crossref]

X. Dong and R. Zhao, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
[Crossref]

M. Yasin, S. W. Harun, Samian, Kusminarto, and H. Ahmad, “Simple design of optical fiber displacement sensor using a multimode fiber coupler,” Laser Phys. 19(7), 1446–1449 (2009).
[Crossref]

W. P. Huang and J. W. Mu, “Complex coupled-mode theory for optical waveguides,” Opt. Express 17(21), 19134–19152 (2009).
[Crossref] [PubMed]

D. Donlagic, “A low bending loss multimode fiber transmission system,” Opt. Express 17(24), 22081–22095 (2009).
[Crossref] [PubMed]

2007 (2)

M. Lomer, A. Quintela, M. Lopez-Amo, J. Zubia, and J. M. Lopez-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

2006 (3)

K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17(5), 998–1004 (2006).
[Crossref]

F. El-Diasty, H. A. El-Hennawi, and M. A. Soliman, “Chromatic and opto-mechanical dispersion of some characteristic parameters of optical fiber undergoing macrobending,” Opt. Commun. 267(2), 394–401 (2006).
[Crossref]

B. Cheng and X. Lu, “Analysis of power transfer characteristics among many parallel optical fibers,” Acta Photon. Sinica. 35(1), 29–32 (2006).

2005 (1)

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46(6), 520–522 (2005).
[Crossref]

2004 (2)

H. Golnabi, “Design and operation of a fiber optic sensor for liquid level detection,” Opt. Lasers Eng. 41(5), 801–812 (2004).
[Crossref]

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

2003 (1)

1998 (1)

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IET Optoelectron. 145(6), 313–318 (1998).
[Crossref]

1991 (1)

1975 (1)

A. H. Cherin and E. J. Murphy, “Quasi-ray analysis of crosstalk between multimode optical fibers,” Bell Syst. Tech. J. 54(1), 17–45 (1975).
[Crossref]

1972 (2)

Aboleneen, S. S.

T. Z. N. Sokkar, W. A. Ramadan, M. A. Shams El-Din, H. H. Wahba, and S. S. Aboleneen, “Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber,” Opt. Lasers Eng. 53, 133–141 (2014).
[Crossref]

Ahmad, H.

M. Yasin, S. W. Harun, Samian, Kusminarto, and H. Ahmad, “Simple design of optical fiber displacement sensor using a multimode fiber coupler,” Laser Phys. 19(7), 1446–1449 (2009).
[Crossref]

Aldabaldetreku, G.

Ali,

D. Irawan, J. Saktioto, Ali, and M. Fadhali, “Birefringence analysis of directional fiber coupler induced by fusion and coupling parameters,” Optik 124(17), 3063–3066 (2013).
[Crossref]

Arrue, J.

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42(6), 997–1002 (2003).
[Crossref] [PubMed]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IET Optoelectron. 145(6), 313–318 (1998).
[Crossref]

Arrúe, J.

D. S. Montero, C. Vázquez, I. Möllers, J. Arrúe, and D. Jäger, “A self-referencing intensity based polymer optical fiber sensor for liquid detection,” Sensors 9(8), 6446–6455 (2009).
[Crossref] [PubMed]

Boechat, A. A.

Bottacini, M.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46(6), 520–522 (2005).
[Crossref]

Brambilla, G.

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

Burani, N.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46(6), 520–522 (2005).
[Crossref]

Cheng, B.

B. Cheng and X. Lu, “Analysis of power transfer characteristics among many parallel optical fibers,” Acta Photon. Sinica. 35(1), 29–32 (2006).

Cherin, A. H.

A. H. Cherin and E. J. Murphy, “Quasi-ray analysis of crosstalk between multimode optical fibers,” Bell Syst. Tech. J. 54(1), 17–45 (1975).
[Crossref]

Ding, M.

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

Dong, B.

B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

Dong, X.

X. Dong, W. Liu, and R. Zhao, “Liquid-level sensor based on tapered chirped fiber grating,” Sci. China Technol. Sci. 56(2), 471–474 (2013).
[Crossref]

X. Dong and R. Zhao, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010).
[Crossref]

X. Dong and R. Zhao, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
[Crossref]

Donlagic, D.

Durana, G.

El-Diasty, F.

F. El-Diasty, H. A. El-Hennawi, and M. A. Soliman, “Chromatic and opto-mechanical dispersion of some characteristic parameters of optical fiber undergoing macrobending,” Opt. Commun. 267(2), 394–401 (2006).
[Crossref]

El-Hennawi, H. A.

F. El-Diasty, H. A. El-Hennawi, and M. A. Soliman, “Chromatic and opto-mechanical dispersion of some characteristic parameters of optical fiber undergoing macrobending,” Opt. Commun. 267(2), 394–401 (2006).
[Crossref]

Fadhali, M.

D. Irawan, J. Saktioto, Ali, and M. Fadhali, “Birefringence analysis of directional fiber coupler induced by fusion and coupling parameters,” Optik 124(17), 3063–3066 (2013).
[Crossref]

Foroni, M.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46(6), 520–522 (2005).
[Crossref]

Fuster, G.

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IET Optoelectron. 145(6), 313–318 (1998).
[Crossref]

Ge, J.

C. Zhao, L. Ye, J. Ge, J. Zou, and X. Yu, “Novel light-leaking optical fiber liquid-level sensor for aircraft fuel gauging,” Opt. Eng. 52(1), 014402 (2013).
[Crossref]

Gloge, D.

Golnabi, H.

H. Golnabi, “Design and operation of a fiber optic sensor for liquid level detection,” Opt. Lasers Eng. 41(5), 801–812 (2004).
[Crossref]

Gu, H.

B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

Guo, T.

B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

Hall, D. R.

Han, Z. F.

Harun, S. W.

M. Yasin, S. W. Harun, Samian, Kusminarto, and H. Ahmad, “Simple design of optical fiber displacement sensor using a multimode fiber coupler,” Laser Phys. 19(7), 1446–1449 (2009).
[Crossref]

Huang, W. P.

Husdi, I. R.

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

Irawan, D.

D. Irawan, J. Saktioto, Ali, and M. Fadhali, “Birefringence analysis of directional fiber coupler induced by fusion and coupling parameters,” Optik 124(17), 3063–3066 (2013).
[Crossref]

Jäger, D.

D. S. Montero, C. Vázquez, I. Möllers, J. Arrúe, and D. Jäger, “A self-referencing intensity based polymer optical fiber sensor for liquid detection,” Sensors 9(8), 6446–6455 (2009).
[Crossref] [PubMed]

Ji, Z.

Jones, J. D.

Kalymnios, D.

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IET Optoelectron. 145(6), 313–318 (1998).
[Crossref]

Khotiaintsev, S. N.

K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17(5), 998–1004 (2006).
[Crossref]

Kusminarto,

M. Yasin, S. W. Harun, Samian, Kusminarto, and H. Ahmad, “Simple design of optical fiber displacement sensor using a multimode fiber coupler,” Laser Phys. 19(7), 1446–1449 (2009).
[Crossref]

Li, S.

B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

Liu, J.

Liu, W.

X. Dong, W. Liu, and R. Zhao, “Liquid-level sensor based on tapered chirped fiber grating,” Sci. China Technol. Sci. 56(2), 471–474 (2013).
[Crossref]

Lomer, M.

M. Lomer, A. Quintela, M. Lopez-Amo, J. Zubia, and J. M. Lopez-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

Lopez-Amo, M.

M. Lomer, A. Quintela, M. Lopez-Amo, J. Zubia, and J. M. Lopez-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

Lopez-Higuera, J. M.

M. Lomer, A. Quintela, M. Lopez-Amo, J. Zubia, and J. M. Lopez-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

Lu, J.

B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

Lu, X.

B. Cheng and X. Lu, “Analysis of power transfer characteristics among many parallel optical fibers,” Acta Photon. Sinica. 35(1), 29–32 (2006).

Mateo, J.

Möllers, I.

D. S. Montero, C. Vázquez, I. Möllers, J. Arrúe, and D. Jäger, “A self-referencing intensity based polymer optical fiber sensor for liquid detection,” Sensors 9(8), 6446–6455 (2009).
[Crossref] [PubMed]

Montero, D. S.

D. S. Montero, C. Vázquez, I. Möllers, J. Arrúe, and D. Jäger, “A self-referencing intensity based polymer optical fiber sensor for liquid detection,” Sensors 9(8), 6446–6455 (2009).
[Crossref] [PubMed]

Mu, J. W.

Murphy, E. J.

A. H. Cherin and E. J. Murphy, “Quasi-ray analysis of crosstalk between multimode optical fibers,” Bell Syst. Tech. J. 54(1), 17–45 (1975).
[Crossref]

Nakamura, K.

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

Poli, F.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46(6), 520–522 (2005).
[Crossref]

Quintela, A.

M. Lomer, A. Quintela, M. Lopez-Amo, J. Zubia, and J. M. Lopez-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

Ramadan, W. A.

T. Z. N. Sokkar, W. A. Ramadan, M. A. Shams El-Din, H. H. Wahba, and S. S. Aboleneen, “Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber,” Opt. Lasers Eng. 53, 133–141 (2014).
[Crossref]

Romo-Medrano, K. E.

K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17(5), 998–1004 (2006).
[Crossref]

Saktioto, J.

D. Irawan, J. Saktioto, Ali, and M. Fadhali, “Birefringence analysis of directional fiber coupler induced by fusion and coupling parameters,” Optik 124(17), 3063–3066 (2013).
[Crossref]

Samian,

M. Yasin, S. W. Harun, Samian, Kusminarto, and H. Ahmad, “Simple design of optical fiber displacement sensor using a multimode fiber coupler,” Laser Phys. 19(7), 1446–1449 (2009).
[Crossref]

Selleri, S.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46(6), 520–522 (2005).
[Crossref]

Shams El-Din, M. A.

T. Z. N. Sokkar, W. A. Ramadan, M. A. Shams El-Din, H. H. Wahba, and S. S. Aboleneen, “Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber,” Opt. Lasers Eng. 53, 133–141 (2014).
[Crossref]

Shim, J. H.

K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sens. Actuators A Phys. 152(2), 248–251 (2009).
[Crossref]

Snyder, A. W.

Sohn, K. R.

K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sens. Actuators A Phys. 152(2), 248–251 (2009).
[Crossref]

Sokkar, T. Z. N.

T. Z. N. Sokkar, W. A. Ramadan, M. A. Shams El-Din, H. H. Wahba, and S. S. Aboleneen, “Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber,” Opt. Lasers Eng. 53, 133–141 (2014).
[Crossref]

Soliman, M. A.

F. El-Diasty, H. A. El-Hennawi, and M. A. Soliman, “Chromatic and opto-mechanical dispersion of some characteristic parameters of optical fiber undergoing macrobending,” Opt. Commun. 267(2), 394–401 (2006).
[Crossref]

Su, D.

Sun, F. W.

Ueha, S.

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

Vázquez, C.

D. S. Montero, C. Vázquez, I. Möllers, J. Arrúe, and D. Jäger, “A self-referencing intensity based polymer optical fiber sensor for liquid detection,” Sensors 9(8), 6446–6455 (2009).
[Crossref] [PubMed]

Wahba, H. H.

T. Z. N. Sokkar, W. A. Ramadan, M. A. Shams El-Din, H. H. Wahba, and S. S. Aboleneen, “Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber,” Opt. Lasers Eng. 53, 133–141 (2014).
[Crossref]

Wang, L.

Wang, P.

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

Xiong, J. J.

Xue, C. Y.

Xue, L.

B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

Yan, S. B.

Yan, Y. Z.

Yasin, M.

M. Yasin, S. W. Harun, Samian, Kusminarto, and H. Ahmad, “Simple design of optical fiber displacement sensor using a multimode fiber coupler,” Laser Phys. 19(7), 1446–1449 (2009).
[Crossref]

Ye, L.

C. Zhao, L. Ye, J. Ge, J. Zou, and X. Yu, “Novel light-leaking optical fiber liquid-level sensor for aircraft fuel gauging,” Opt. Eng. 52(1), 014402 (2013).
[Crossref]

Yu, X.

C. Zhao, L. Ye, J. Ge, J. Zou, and X. Yu, “Novel light-leaking optical fiber liquid-level sensor for aircraft fuel gauging,” Opt. Eng. 52(1), 014402 (2013).
[Crossref]

Zhang, W. D.

Zhang, Y. G.

Zhao, C.

C. Zhao, L. Ye, J. Ge, J. Zou, and X. Yu, “Novel light-leaking optical fiber liquid-level sensor for aircraft fuel gauging,” Opt. Eng. 52(1), 014402 (2013).
[Crossref]

Zhao, Q.

B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

Zhao, R.

X. Dong, W. Liu, and R. Zhao, “Liquid-level sensor based on tapered chirped fiber grating,” Sci. China Technol. Sci. 56(2), 471–474 (2013).
[Crossref]

X. Dong and R. Zhao, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010).
[Crossref]

X. Dong and R. Zhao, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
[Crossref]

Zou, C. L.

Zou, J.

C. Zhao, L. Ye, J. Ge, J. Zou, and X. Yu, “Novel light-leaking optical fiber liquid-level sensor for aircraft fuel gauging,” Opt. Eng. 52(1), 014402 (2013).
[Crossref]

Zubia, J.

M. Lomer, A. Quintela, M. Lopez-Amo, J. Zubia, and J. M. Lopez-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42(6), 997–1002 (2003).
[Crossref] [PubMed]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IET Optoelectron. 145(6), 313–318 (1998).
[Crossref]

Acta Photon. Sinica. (1)

B. Cheng and X. Lu, “Analysis of power transfer characteristics among many parallel optical fibers,” Acta Photon. Sinica. 35(1), 29–32 (2006).

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

A. H. Cherin and E. J. Murphy, “Quasi-ray analysis of crosstalk between multimode optical fibers,” Bell Syst. Tech. J. 54(1), 17–45 (1975).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

IET Optoelectron. (1)

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IET Optoelectron. 145(6), 313–318 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Phys. (1)

M. Yasin, S. W. Harun, Samian, Kusminarto, and H. Ahmad, “Simple design of optical fiber displacement sensor using a multimode fiber coupler,” Laser Phys. 19(7), 1446–1449 (2009).
[Crossref]

Meas. Sci. Technol. (3)

M. Lomer, A. Quintela, M. Lopez-Amo, J. Zubia, and J. M. Lopez-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

K. E. Romo-Medrano and S. N. Khotiaintsev, “An optical-fibre refractometric liquid-level sensor for liquid nitrogen,” Meas. Sci. Technol. 17(5), 998–1004 (2006).
[Crossref]

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

Microw. Opt. Technol. Lett. (1)

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46(6), 520–522 (2005).
[Crossref]

Opt. Commun. (2)

X. Dong and R. Zhao, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
[Crossref]

F. El-Diasty, H. A. El-Hennawi, and M. A. Soliman, “Chromatic and opto-mechanical dispersion of some characteristic parameters of optical fiber undergoing macrobending,” Opt. Commun. 267(2), 394–401 (2006).
[Crossref]

Opt. Eng. (1)

C. Zhao, L. Ye, J. Ge, J. Zou, and X. Yu, “Novel light-leaking optical fiber liquid-level sensor for aircraft fuel gauging,” Opt. Eng. 52(1), 014402 (2013).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

X. Dong and R. Zhao, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010).
[Crossref]

Opt. Lasers Eng. (2)

H. Golnabi, “Design and operation of a fiber optic sensor for liquid level detection,” Opt. Lasers Eng. 41(5), 801–812 (2004).
[Crossref]

T. Z. N. Sokkar, W. A. Ramadan, M. A. Shams El-Din, H. H. Wahba, and S. S. Aboleneen, “Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber,” Opt. Lasers Eng. 53, 133–141 (2014).
[Crossref]

Optik (1)

D. Irawan, J. Saktioto, Ali, and M. Fadhali, “Birefringence analysis of directional fiber coupler induced by fusion and coupling parameters,” Optik 124(17), 3063–3066 (2013).
[Crossref]

Proc. SPIE (1)

B. Dong, Q. Zhao, J. Lu, T. Guo, L. Xue, S. Li, and H. Gu, “A digital liquid level sensor system based on parallel fiber sensor heads,” Proc. SPIE 6595, 659541 (2007).

Sci. China Technol. Sci. (1)

X. Dong, W. Liu, and R. Zhao, “Liquid-level sensor based on tapered chirped fiber grating,” Sci. China Technol. Sci. 56(2), 471–474 (2013).
[Crossref]

Sens. Actuators A Phys. (1)

K. R. Sohn and J. H. Shim, “Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever,” Sens. Actuators A Phys. 152(2), 248–251 (2009).
[Crossref]

Sensors (1)

D. S. Montero, C. Vázquez, I. Möllers, J. Arrúe, and D. Jäger, “A self-referencing intensity based polymer optical fiber sensor for liquid detection,” Sensors 9(8), 6446–6455 (2009).
[Crossref] [PubMed]

Other (1)

G. Betta, A. Pietrosant, and A. Scaglione, “A digital level transducer based on optical fiber,” in Instrumentation and Measurement Technology Conference, USA, 24–26 Apr 1995.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Macro-bend coupling phenomenon is exhibited by 650nm red light laser coupling in TMBCS(P0:light input port; P1:straight output port; P2:forward coupling port;P3:backward coupling port).
Fig. 2
Fig. 2 Macro-bend coupling and cladding mode internal reflection sensing mechanism.
Fig. 3
Fig. 3 Macro-bend coupling system.
Fig. 4
Fig. 4 The forward coupling power of PMBCS and TMBCS experiment device.
Fig. 5
Fig. 5 Forward coupling power of PMBCS changes with perimeter of macro-bend loop (A-F are the numbers of tests).
Fig. 6
Fig. 6 Forward coupling power of TMBCS changes with perimeter of macro-bend loop (A-D are the numbers of the tests).
Fig. 7
Fig. 7 Dark-field forward coupling efficiency of TMBCS changes with perimeter of macro-bend loop (A-D are the numbers of the tests).
Fig. 8
Fig. 8 The enhancement of CMFTIR effect (A: straight fiber; B: single bent fiber; C: TMBCS).
Fig. 9
Fig. 9 Encapsulated TMBCS liquid level probe.
Fig. 10
Fig. 10 20 times repeated water immersion test for TMBCS liquid level probe (when the power is above the red line the probe is in the air and dry; when in the middle of the red and green it is also in the air but wet; when under yellow it is in the water).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P r = P i T
T = 4 cos θ ( cos 2 θ cos 2 θ c ) 1 / 2 [ cos θ + ( cos 2 θ cos 2 θ c ) 1 / 2 ] 2
C = δ U 2 K 0 [ W ( d / ρ ) ] V 3 K 1 2 ( W )
K d 1 = P 2 Δ P 1
E r =-10log ( P 2liquid / P 2air )

Metrics