Abstract

The light distributions in different tunnel zones have different requirements in order to meet the driver’s visual system. In this paper, the light intensity distributions of tunnel lamps in different zones of a long tunnel are optimized separately. A common nonlinear optimization approach is proposed to minimize the consuming power as well as satisfy the luminance and glare requirements both on the road surface and on the wall set by International Commission on Illumination (CIE). Compared with that of the reported linear optimization method, the optimization model can save energy from 11% to 57.6% under the same installation conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of LED freeform optical system for road lighting with high luminance/illuminance ratio

Zexin Feng, Yi Luo, and Yanjun Han
Opt. Express 18(21) 22020-22031 (2010)

Optimization of solid-state lamps for photobiologically friendly mesopic lighting

Artūras Žukauskas, Rimantas Vaicekauskas, and Pranciškus Vitta
Appl. Opt. 51(35) 8423-8432 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Kircher and C. Ahlstrom, “The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers,” Accid. Anal. Prev. 47, 153–161 (2012).
    [Crossref] [PubMed]
  2. CIE, (commission Internationale del'Eclairage). Guide for the lighting of road tunnels and underpasses (CIE publication 88, Vienna, 2004).
  3. S. Leitao, E. J. S. Pires, and P. B. M. Oliveira, “Road Tunnels Lighting using Genetic Algorithms,” in Proceedings of IEEE Conference on Intelligent System Applications to Power Systems (Institute of Computer Society, Curitiba, 2009), pp.1–6.
  4. CEN, (European Committee for Standardization). Lighting applications - Tunnel lighting (CEN CR 14380, Brussels, 2003).
  5. Z. P. Su, D. L. Xue, and Z. C. Ji, “Designing LED array for uniform illumination distribution by simulated annealing algorithm,” Opt. Express 20(S6), A843–A855 (2012).
    [Crossref]
  6. R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
    [Crossref]
  7. R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51(13), 2257–2263 (2012).
    [Crossref] [PubMed]
  8. A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim. 40(1), 47–65 (2008).
    [Crossref]
  9. Z. X. Feng, Y. Luo, and Y. J. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18(21), 22020–22031 (2010).
    [Crossref] [PubMed]
  10. X. J. Hu and K. Y. Qian, “Optimal design of optical system for LED road lighting with high illuminance and luminance uniformity,” Appl. Opt. 52(24), 5888–5893 (2013).
    [Crossref] [PubMed]
  11. W. Lai, W. M. Chen, X. M. Liu, and X. H. Lei, “Optimal design of light distribution of LED luminaries for road lighting,” Proc. SPIE 8123, 81231P (2011).
    [Crossref]
  12. CIE, (commission Internationale del'Eclairage). Road Lighting Calculations (CIE publication 140, Vienna, 2000).
  13. CIE, (commission Internationale del'Eclairage). Road surface and road marking reflection characteristics (CIE publication 144, Vienna, 2001).
  14. CIE, (commission Internationale del'Eclairage). Glare and uniformity in road lighting installations (CIE publication 31, Vienna, 1976).
  15. S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19(S4Suppl 4), A716–A724 (2011).
    [Crossref] [PubMed]
  16. I. Moreno and C. C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16(3), 1808–1819 (2008).
    [Crossref] [PubMed]

2013 (2)

R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
[Crossref]

X. J. Hu and K. Y. Qian, “Optimal design of optical system for LED road lighting with high illuminance and luminance uniformity,” Appl. Opt. 52(24), 5888–5893 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

W. Lai, W. M. Chen, X. M. Liu, and X. H. Lei, “Optimal design of light distribution of LED luminaries for road lighting,” Proc. SPIE 8123, 81231P (2011).
[Crossref]

S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19(S4Suppl 4), A716–A724 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (2)

I. Moreno and C. C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16(3), 1808–1819 (2008).
[Crossref] [PubMed]

A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim. 40(1), 47–65 (2008).
[Crossref]

Ahlstrom, C.

K. Kircher and C. Ahlstrom, “The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers,” Accid. Anal. Prev. 47, 153–161 (2012).
[Crossref] [PubMed]

Chen, F.

Chen, W. M.

W. Lai, W. M. Chen, X. M. Liu, and X. H. Lei, “Optimal design of light distribution of LED luminaries for road lighting,” Proc. SPIE 8123, 81231P (2011).
[Crossref]

Feng, Z. X.

Han, Y. J.

Hu, X. J.

Ji, Z. C.

Kircher, K.

K. Kircher and C. Ahlstrom, “The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers,” Accid. Anal. Prev. 47, 153–161 (2012).
[Crossref] [PubMed]

Lai, W.

W. Lai, W. M. Chen, X. M. Liu, and X. H. Lei, “Optimal design of light distribution of LED luminaries for road lighting,” Proc. SPIE 8123, 81231P (2011).
[Crossref]

Lei, X. H.

W. Lai, W. M. Chen, X. M. Liu, and X. H. Lei, “Optimal design of light distribution of LED luminaries for road lighting,” Proc. SPIE 8123, 81231P (2011).
[Crossref]

Li, H. F.

R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
[Crossref]

R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51(13), 2257–2263 (2012).
[Crossref] [PubMed]

Liu, P.

R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
[Crossref]

Liu, S.

Liu, X.

R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
[Crossref]

R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51(13), 2257–2263 (2012).
[Crossref] [PubMed]

Liu, X. M.

W. Lai, W. M. Chen, X. M. Liu, and X. H. Lei, “Optimal design of light distribution of LED luminaries for road lighting,” Proc. SPIE 8123, 81231P (2011).
[Crossref]

Luo, Y.

Moreno, I.

Pachamanov, A.

A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim. 40(1), 47–65 (2008).
[Crossref]

Pachamanova, D.

A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim. 40(1), 47–65 (2008).
[Crossref]

Qian, K. Y.

Su, Z. P.

Sun, C. C.

Wang, H. H.

R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
[Crossref]

Wang, K.

Wang, S.

Wu, R. M.

R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
[Crossref]

R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51(13), 2257–2263 (2012).
[Crossref] [PubMed]

Xue, D. L.

Zhang, Y. Q.

R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
[Crossref]

Zheng, Z. R.

R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
[Crossref]

R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51(13), 2257–2263 (2012).
[Crossref] [PubMed]

Accid. Anal. Prev. (1)

K. Kircher and C. Ahlstrom, “The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers,” Accid. Anal. Prev. 47, 153–161 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Eng. Optim. (1)

A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim. 40(1), 47–65 (2008).
[Crossref]

Opt. Commun. (1)

R. M. Wu, H. H. Wang, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Efficient optimal design of smooth optical freeform surfaces using ray targeting,” Opt. Commun. 300, 100–107 (2013).
[Crossref]

Opt. Express (4)

Proc. SPIE (1)

W. Lai, W. M. Chen, X. M. Liu, and X. H. Lei, “Optimal design of light distribution of LED luminaries for road lighting,” Proc. SPIE 8123, 81231P (2011).
[Crossref]

Other (6)

CIE, (commission Internationale del'Eclairage). Road Lighting Calculations (CIE publication 140, Vienna, 2000).

CIE, (commission Internationale del'Eclairage). Road surface and road marking reflection characteristics (CIE publication 144, Vienna, 2001).

CIE, (commission Internationale del'Eclairage). Glare and uniformity in road lighting installations (CIE publication 31, Vienna, 1976).

CIE, (commission Internationale del'Eclairage). Guide for the lighting of road tunnels and underpasses (CIE publication 88, Vienna, 2004).

S. Leitao, E. J. S. Pires, and P. B. M. Oliveira, “Road Tunnels Lighting using Genetic Algorithms,” in Proceedings of IEEE Conference on Intelligent System Applications to Power Systems (Institute of Computer Society, Curitiba, 2009), pp.1–6.

CEN, (European Committee for Standardization). Lighting applications - Tunnel lighting (CEN CR 14380, Brussels, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 The five tunnel zones of a long tunnel for lighting design.
Fig. 2
Fig. 2 Illustration of the calculation for tunnel lighting.
Fig. 3
Fig. 3 Optimal light distributions at different zones. (a) the beginning of the threshold zone. (b) the second half of the threshold zone. (c) the middle of the transition zone. (d) the interior zone. (e) the exit zone.

Tables (3)

Tables Icon

Table 1 Geometrical Parameters of Lighting Installations at Different Tunnel Zones

Tables Icon

Table 2 Lighting Parameters Obtained from Nonlinear and Linear Optimization Method at Different Zones

Tables Icon

Table 3 Comparison of Lighting Parameters with the Different Optimal Light Distribution at the Same Zone

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

L r ( x i , y j ) = m = 1 M r m ( β m ( x i , y j ) , γ m ( x i , y j ) ) ) 10 4 cos 3 γ m ( x i , y j ) E r m ( x i , y j ) ,
L r o a d . a v = i = 1 M R j = 1 N R L r ( x i , y j ) M R N R .
U r o a d . O = min ( L r ( x i , y j ) ) L r o a d . a v , i = 1 , 2... , M R , j = 1 , 2... , N R ,
U r o a d . L = min ( L r ( x i , y m i d d l e ) ) max ( L r ( x i , y m i d d l e ) ) , i = 1 , 2... , M R ,
L v = 3 × 10 3 m = 1 M E V m θ m 2 ,
T I = 65 L v L r o a d . a v 0.8 ,
T I = 95 L v L r o a d . a v 1.05 ,
L w ( x i , z k ) = ρ w a l l π E w ( x i , z k ) ,
L w a l l . a v = i = 1 M W k = 1 N W L w ( x i , z k ) M W N W ,
U w a l l . O = min ( L w ( x i , z k ) ) L w a l l . a v , i = 1 , 2... , M W , k = 1 , 2... , N W ,
L r o a d . a v L r o a d . a v T ,
U r o a d . O U r o a d . O T ,
U r o a d . L U r o a d . L T ,
T I T I T .
L w a l l . a v q × L r o a d . a v ,
U w a l l . O U w a l l . O T ,
min Φ = i = 1 M L j = 1 N L R I ( C ( x i , y j ) , γ ( x i , y j ) ) d ω ( x i , y j ) + 2 × i = 1 M L k = 1 N L W I ( C ( x i , z k ) , γ ( x i , z k ) ) d ω ( x i , z k ) ,
d ω ( x i , y j ) = d S cos 3 γ ( x i , y j ) H 2 i = 1 , 2... , M L , j = 1 , 2... , N L R ,
d ω ( x i , z k ) = d S cos 2 γ ( x i , z k ) sin γ ( x i , z k ) H 2 i = 1 , 2... , M L , k = 1 , 2... , N L W .
s . t . i = 1 M R j = 1 N R L r ( x i , y j ) M R N R L r o a d . a v T ,
min ( L r ( x i , y j ) ) L r o a d . a v U r o a d . O T , i = 1 , 2... , M R , j = 1 , 2... , N R ,
min ( L r ( x i , y m i d d l e ) ) max ( L r ( x i , y m i d d l e ) ) U r o a d . L T , i = 1 , 2... , M R ,
k T I × 3 × 10 3 m = 1 M E V m θ m 2 L r o a d . a v n T I T I T ,
i = 1 M W k = 1 N W L w ( x i , z k ) M W N W q i = 1 M R j = 1 N R L r ( x i , y j ) M R N R ,
min ( L w ( x i , z k ) ) L w a l l . a v U w a l l . O T , i = 1 , 2... , M W , k = 1 , 2... , N W ,
min Φ = i = 1 M L j = 1 N L R E r ( x i , y j ) d S r + 2 × i = 1 M L k = 1 N L W E w ( x i , z k ) d S w ,
E w ( x i , z k ) = H 2 tan γ k ( x i , z k ) ( H z k ) 2 E r ( H H z k x i , H H z k W 2 ) . i = 1 , 2... , M L , k = 1 , 2... , N L W
E r ( x , y ) = u = 0 U v = 0 V a ( r , s ) cos u ( tan 1 ( x H ) ) cos v ( tan 1 ( y H ) + φ ) ,

Metrics