Abstract

We both experimentally and numerically studied the ultra-compact wavelength conversion by using the four-wave mixing (FWM) process in Raman distributed-feedback (R-DFB) fiber lasers. The R-DFB fiber laser is formed in a 30 cm-long commercially available Ge/Si standard optical fiber. The internal generated R-DFB signal acts as the pump wave for the FWM process and is in the normal dispersion range of the fiber. Utilizing a tunable laser source as a probe wave, FWM frequency conversion up to ~40 THz has been demonstrated with conversion efficiency > −40 dB. The principle of such a wide bandwidth and high conversion efficiency in such a short R-DFB cavity has been theoretically analyzed. The simulation results match well with the experimental data.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrawide-range four-wave mixing in Raman distributed-feedback fiber lasers

Jindan Shi, Shaif-ul Alam, and Morten Ibsen
Opt. Lett. 38(6) 944-946 (2013)

Highly efficient generation of broadband cascaded four-wave mixing products

Arismar Cerqueira S. Jr, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight
Opt. Express 16(4) 2816-2828 (2008)

Four-wave mixing in nanosecond pulsed fiber amplifiers

Jean-Philippe Fève, Paul E. Schrader, Roger L. Farrow, and Dahv A.V. Kliner
Opt. Express 15(8) 4647-4662 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6(8), 984–987 (1994).
    [Crossref]
  2. F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
    [Crossref]
  3. H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “Nondegenerate four-wave mixing in a long-cavity λ/4-shifted DFB laser using its lasing beam as pump beams,” IEEE J. Quantum Electron. 33(11), 2002–2010 (1997).
    [Crossref]
  4. H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31(24), 2108–2110 (1995).
    [Crossref]
  5. B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photon. Technol. Lett. 10(4), 519–521 (1998).
    [Crossref]
  6. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
    [Crossref] [PubMed]
  7. H. Hu, C. Peucheret, M. Pu, H. Ji, M. Galili, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Wavelength conversion with large signal-idler separation using discrete four-wave mixing in a silicon nanowire,” in Proceedings of CLEO: Science and Innovations (CLEO: S and I), OSA Technical Digest (online) (Optical Society of America, 2012), CW1A.2.
    [Crossref]
  8. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
    [Crossref]
  9. O. Aso, S.-I. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36(8), 709–711 (2000).
    [Crossref]
  10. K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
    [Crossref]
  11. K. Inoue, “Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Opt. Lett. 19(16), 1189–1191 (1994).
    [Crossref] [PubMed]
  12. A. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett. 30(18), 2375–2377 (2005).
    [Crossref] [PubMed]
  13. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
    [Crossref]
  14. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express 14(20), 8995–8999 (2006).
    [Crossref] [PubMed]
  15. J. Shi, S. U. Alam, and M. Ibsen, “Ultrawide-range four-wave mixing in Raman distributed-feedback fiber lasers,” Opt. Lett. 38(6), 944–946 (2013).
    [Crossref] [PubMed]
  16. J. Shi, S. U. Alam, and M. Ibsen, “Ultra-broadband wavelength conversion based on four-wave mixing in a Raman DFB fiber laser, ” in Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.23.
    [Crossref]
  17. J. Shi, S.-U. Alam, and M. Ibsen, “Sub-watt threshold, kilohertz-linewidth Raman distributed-feedback fiber laser,” Opt. Lett. 37(9), 1544–1546 (2012).
  18. J. Shi, S. U. Alam, and M. Ibsen, “Highly efficient Raman distributed feedback fibre lasers,” Opt. Express 20(5), 5082–5091 (2012).
    [Crossref] [PubMed]
  19. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
    [Crossref]
  20. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Springer, 2000).
  21. W. H. Loh, B. N. Samson, and J. P. de Sandro, “Intensity profile in a distributed feedback fiber laser characterized by a green fluorescence scanning technique,” Appl. Phys. Lett. 69(25), 3773–3775 (1996).
    [Crossref]
  22. I. V. Kabakova, T. Walsh, C. M. De Sterke, and B. J. Eggleton, “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27(7), 1343–1351 (2010).
    [Crossref]
  23. Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun. 282(16), 3356–3359 (2009).
    [Crossref]
  24. Q. Zeng, “Dispersive properties in phase-shifted Bragg grating filters,” in Proceedings of Antennas and Propagation Society International Symposium (1998), Vol. 1062, pp. 1060–1063.

2013 (1)

2012 (2)

2010 (2)

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

I. V. Kabakova, T. Walsh, C. M. De Sterke, and B. J. Eggleton, “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27(7), 1343–1351 (2010).
[Crossref]

2009 (1)

Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun. 282(16), 3356–3359 (2009).
[Crossref]

2006 (1)

2005 (2)

2000 (1)

O. Aso, S.-I. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36(8), 709–711 (2000).
[Crossref]

1998 (2)

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photon. Technol. Lett. 10(4), 519–521 (1998).
[Crossref]

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

1997 (2)

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “Nondegenerate four-wave mixing in a long-cavity λ/4-shifted DFB laser using its lasing beam as pump beams,” IEEE J. Quantum Electron. 33(11), 2002–2010 (1997).
[Crossref]

1996 (1)

W. H. Loh, B. N. Samson, and J. P. de Sandro, “Intensity profile in a distributed feedback fiber laser characterized by a green fluorescence scanning technique,” Appl. Phys. Lett. 69(25), 3773–3775 (1996).
[Crossref]

1995 (1)

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31(24), 2108–2110 (1995).
[Crossref]

1994 (2)

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6(8), 984–987 (1994).
[Crossref]

K. Inoue, “Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Opt. Lett. 19(16), 1189–1191 (1994).
[Crossref] [PubMed]

1992 (2)

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

Alam, S. U.

Alam, S.-U.

Arai, S.-I.

O. Aso, S.-I. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36(8), 709–711 (2000).
[Crossref]

Aso, O.

O. Aso, S.-I. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36(8), 709–711 (2000).
[Crossref]

Broderick, N. G. R.

Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun. 282(16), 3356–3359 (2009).
[Crossref]

Camerlingo, A.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

D’Ottavi, A.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

Dall’Ara, R.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

de Sandro, J. P.

W. H. Loh, B. N. Samson, and J. P. de Sandro, “Intensity profile in a distributed feedback fiber laser characterized by a green fluorescence scanning technique,” Appl. Phys. Lett. 69(25), 3773–3775 (1996).
[Crossref]

De Sterke, C. M.

Demokan, M. S.

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

Eckner, J.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

Eggleton, B. J.

Feng, X.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Fukuda, H.

Girardin, F.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

Guekos, G.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

Harvey, J. D.

Horak, P.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Hu, Y.

Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun. 282(16), 3356–3359 (2009).
[Crossref]

Ibsen, M.

Inoue, K.

K. Inoue, “Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Opt. Lett. 19(16), 1189–1191 (1994).
[Crossref] [PubMed]

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

Ishikawa, H.

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photon. Technol. Lett. 10(4), 519–521 (1998).
[Crossref]

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “Nondegenerate four-wave mixing in a long-cavity λ/4-shifted DFB laser using its lasing beam as pump beams,” IEEE J. Quantum Electron. 33(11), 2002–2010 (1997).
[Crossref]

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31(24), 2108–2110 (1995).
[Crossref]

Itabashi, S.-i.

Kabakova, I. V.

Kuwatsuka, H.

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photon. Technol. Lett. 10(4), 519–521 (1998).
[Crossref]

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “Nondegenerate four-wave mixing in a long-cavity λ/4-shifted DFB laser using its lasing beam as pump beams,” IEEE J. Quantum Electron. 33(11), 2002–2010 (1997).
[Crossref]

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31(24), 2108–2110 (1995).
[Crossref]

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

Little, B. E.

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photon. Technol. Lett. 10(4), 519–521 (1998).
[Crossref]

Loh, W. H.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

W. H. Loh, B. N. Samson, and J. P. de Sandro, “Intensity profile in a distributed feedback fiber laser characterized by a green fluorescence scanning technique,” Appl. Phys. Lett. 69(25), 3773–3775 (1996).
[Crossref]

Martelli, F.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

Matsuda, M.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “Nondegenerate four-wave mixing in a long-cavity λ/4-shifted DFB laser using its lasing beam as pump beams,” IEEE J. Quantum Electron. 33(11), 2002–2010 (1997).
[Crossref]

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31(24), 2108–2110 (1995).
[Crossref]

McKinstrie, C. J.

Méchin, D.

Mecozzi, A.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

Miller, B. I.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6(8), 984–987 (1994).
[Crossref]

Namiki, S.

O. Aso, S.-I. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36(8), 709–711 (2000).
[Crossref]

Newkirk, M. A.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6(8), 984–987 (1994).
[Crossref]

Park, N.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6(8), 984–987 (1994).
[Crossref]

Parmigiani, F.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Petropoulos, P.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Petrovich, M.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Poletti, F.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Ponzo, G. M.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Provo, R.

Richardson, D. J.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Samson, B. N.

W. H. Loh, B. N. Samson, and J. P. de Sandro, “Intensity profile in a distributed feedback fiber laser characterized by a green fluorescence scanning technique,” Appl. Phys. Lett. 69(25), 3773–3775 (1996).
[Crossref]

Scotti, S.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

Shi, J.

Shoji, H.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “Nondegenerate four-wave mixing in a long-cavity λ/4-shifted DFB laser using its lasing beam as pump beams,” IEEE J. Quantum Electron. 33(11), 2002–2010 (1997).
[Crossref]

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31(24), 2108–2110 (1995).
[Crossref]

Shoji, T.

Spano, P.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

Suzuki, Y.

O. Aso, S.-I. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36(8), 709–711 (2000).
[Crossref]

Tadakuma, M.

O. Aso, S.-I. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36(8), 709–711 (2000).
[Crossref]

Takahashi, J.-i.

Takahashi, M.

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

Tsuchizawa, T.

Vahala, K. J.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6(8), 984–987 (1994).
[Crossref]

Walsh, T.

Watanabe, T.

Yagi, T.

O. Aso, S.-I. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36(8), 709–711 (2000).
[Crossref]

Yamada, K.

Zhang, A.

Zhou, J.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6(8), 984–987 (1994).
[Crossref]

Appl. Phys. Lett. (1)

W. H. Loh, B. N. Samson, and J. P. de Sandro, “Intensity profile in a distributed feedback fiber laser characterized by a green fluorescence scanning technique,” Appl. Phys. Lett. 69(25), 3773–3775 (1996).
[Crossref]

Electron. Lett. (2)

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31(24), 2108–2110 (1995).
[Crossref]

O. Aso, S.-I. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36(8), 709–711 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “Nondegenerate four-wave mixing in a long-cavity λ/4-shifted DFB laser using its lasing beam as pump beams,” IEEE J. Quantum Electron. 33(11), 2002–2010 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (5)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6(8), 984–987 (1994).
[Crossref]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 746–748 (1997).
[Crossref]

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photon. Technol. Lett. 10(4), 519–521 (1998).
[Crossref]

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

J. Lightwave Technol. (1)

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun. 282(16), 3356–3359 (2009).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010).
[Crossref]

Opt. Lett. (4)

Other (4)

J. Shi, S. U. Alam, and M. Ibsen, “Ultra-broadband wavelength conversion based on four-wave mixing in a Raman DFB fiber laser, ” in Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.23.
[Crossref]

H. Hu, C. Peucheret, M. Pu, H. Ji, M. Galili, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Wavelength conversion with large signal-idler separation using discrete four-wave mixing in a silicon nanowire,” in Proceedings of CLEO: Science and Innovations (CLEO: S and I), OSA Technical Digest (online) (Optical Society of America, 2012), CW1A.2.
[Crossref]

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Springer, 2000).

Q. Zeng, “Dispersive properties in phase-shifted Bragg grating filters,” in Proceedings of Antennas and Propagation Society International Symposium (1998), Vol. 1062, pp. 1060–1063.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of experimental setup for FWM generation in a R-DFB fiber laser. ISO: isolator; PC: polarization controller; WDM: wavelength division multiplexer; TLS: tunable laser source; YDFA: Yb-doped fiber amplifier; OSA: optical spectrum analyzer.
Fig. 2
Fig. 2 (a) FWM output spectra with a resolution of 1 nm and (b) normalized overlapping spectra of the probe wave #2 and corresponding conjugate wave #2* with a resolution of 0.01 nm.
Fig. 3
Fig. 3 (a) FWM conversion efficiency of the R-DFB fiber laser with respect to the frequency detuning. The vertical lines indicate the probe waves of #i (i = 0,1,2,3,4,5). (b) FWM conversion efficiency against incident probe power for probe waves of #1, #2, #3, #4, and #5, respectively.
Fig. 4
Fig. 4 Schematic diagram of theoretical model setup for FWM in R-DFB fiber laser.
Fig. 5
Fig. 5 (a) Calculated FWM conversion efficiency in the 30 cm long R-DFB fiber laser and a similar length of PS980 fiber, respectively; (b) Calculated dispersion profile of the PS980 fiber (inset shows the calculated dispersion of the R-DFB grating).
Fig. 6
Fig. 6 (a) Comparison of the experimental and calculated FWM conversion efficiency against frequency detuning; (b) Calculated FWM conversion efficiency against probe power from several mW to 5 W.
Fig. 7
Fig. 7 Calculated FWM conversion efficiency against (a) coupling coefficient of the DFB grating and (b) length of the DFB grating.

Tables (1)

Tables Icon

Table 1 Main parameters applied for FWM simulation in the R-DFB fiber laser

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A 1 f ( z ) = { A 1 f ( z = L ) sin h ( κ z ) z < L / 2 A 1 f ( z = L ) cos h [ κ ( L z ) ] z > L / 2 A 1 f ( z = L ) [ sin h ( κ L / 2 ) + cos h ( κ L / 2 ) ] / 2 z = L / 2
A 1 b ( z ) = { A 1 b ( z = 0 ) cos h ( κ z ) z < L / 2 A 1 b ( z = 0 ) sin h [ κ ( L z ) ] z > L / 2 A 1 b ( z = 0 ) [ sin h ( κ L / 2 ) + cos h ( κ L / 2 ) ] / 2 z = L / 2
d A 3 / d z = i γ 3 [ ( | A 3 | 2 + 2 | A 1 f | 2 + 2 | A 1 b | 2 + 2 | A 4 | 2 ) A 3 + A 1 f 2 A 4 * e i ( δ k ) z ] α 3 A 3 / 2
d A 4 / d z = i γ 4 [ ( | A 4 | 2 + 2 | A 1 f | 2 + 2 | A 1 b | 2 + 2 | A 3 | 2 ) A 4 + A 1 f 2 A 3 * e i ( δ k ) z ] α 4 A 4 / 2
A 1 f ( z = L ) = A 1 b ( z = 0 ) = P 1 f ( z = L ) / A e f f A 3 ( z = 0 ) = P 3 ( z = 0 ) / A e f f A 4 ( z = 0 ) = 0
η = P 4 ( z = L ) / P 3 ( z = 0 )

Metrics