Abstract

We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index sensing based on Mach–Zehnder interferometer formed by three cascaded single-mode fiber tapers

Di Wu, Tao Zhu, Ming Deng, De-Wen Duan, Lei-Lei Shi, Jun Yao, and Yun-Jiang Rao
Appl. Opt. 50(11) 1548-1553 (2011)

High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai
Appl. Opt. 50(28) 5503-5507 (2011)

Distributed refractive index sensing based on tapered fibers in optical frequency domain reflectometry

Zhenyang Ding, Keliang Sun, Kun Liu, Junfeng Jiang, Di Yang, Zhe Yu, Jing Li, and Tiegen Liu
Opt. Express 26(10) 13042-13054 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
    [Crossref]
  2. M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
    [Crossref] [PubMed]
  3. D. J. J. Hu, J. L. Lim, M. Jiang, Y. X. Wang, F. Luan, P. P. Shum, H. F. Wei, and W. J. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
    [Crossref] [PubMed]
  4. Y. Ma, X. G. Qiao, T. Guo, R. H. Wang, J. Zhang, Y. Y. Weng, Q. Z. Rong, M. L. Hu, and Z. Y. Feng, “Reflective fiber-optic refractometer based on a thin-core fiber tailored Bragg grating reflection,” Opt. Lett. 37(3), 323–325 (2012).
    [Crossref] [PubMed]
  5. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [Crossref] [PubMed]
  6. T. Zhu, Y.-J. Rao, J.-L. Wang, and Y. Song, “A highly sensitive fiber-optic refractive indexsensor based on an edge-written long-period fiber grating,” IEEE Photon. Technol. Lett. 19(24), 1946–1948 (2007).
    [Crossref]
  7. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg Gratings as highsensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
    [Crossref]
  8. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
    [Crossref] [PubMed]
  9. Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–781 (2011).
    [Crossref]
  10. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
    [Crossref]
  11. Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
    [Crossref]
  12. M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
    [Crossref]
  13. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, Adiabaticity criteria,” IEE Proc., Optoelectron. 138(5), 343–354 (1991).
    [Crossref]
  14. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, Experimental and theoretical quantification,” IEE Proc., Optoelectron. 138(5), 355–364 (1991).
    [Crossref]
  15. J. Ju, L. Ma, W. Jin, and Y. Hu, “Photonic bandgap fiber tapers and in-fiber interferometric sensors,” Opt. Lett. 34(12), 1861–1863 (2009).
    [Crossref] [PubMed]
  16. H. I. Balcer, H. J. Kwon, and K. A. Kang, “Assay procedure optimization of a rapid, reusable protein immunosensor for physiological samples,” Ann. Biomed. Eng. 30(1), 141–147 (2002).
    [Crossref] [PubMed]
  17. A. Ghatak, Optics, (McGraw-Hill, 2009).
  18. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [Crossref] [PubMed]
  19. D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
    [Crossref] [PubMed]
  20. Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Perot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38(3), 269–271 (2013).
    [Crossref] [PubMed]
  21. W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
    [Crossref] [PubMed]
  22. M. Z. Muhammad, A. A. Jasim, H. Ahmad, A. Arof, and S. W. Harun, “Non-adiabatic silica microfiber for strain and temperature sensors,” Sens. Actuators A Phys. 192, 130–132 (2013).
    [Crossref]

2013 (3)

2012 (2)

2011 (3)

2010 (3)

M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
[Crossref] [PubMed]

X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[Crossref] [PubMed]

2009 (2)

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

J. Ju, L. Ma, W. Jin, and Y. Hu, “Photonic bandgap fiber tapers and in-fiber interferometric sensors,” Opt. Lett. 34(12), 1861–1863 (2009).
[Crossref] [PubMed]

2007 (2)

T. Zhu, Y.-J. Rao, J.-L. Wang, and Y. Song, “A highly sensitive fiber-optic refractive indexsensor based on an edge-written long-period fiber grating,” IEEE Photon. Technol. Lett. 19(24), 1946–1948 (2007).
[Crossref]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

2006 (2)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg Gratings as highsensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

2002 (1)

H. I. Balcer, H. J. Kwon, and K. A. Kang, “Assay procedure optimization of a rapid, reusable protein immunosensor for physiological samples,” Ann. Biomed. Eng. 30(1), 141–147 (2002).
[Crossref] [PubMed]

1991 (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, Adiabaticity criteria,” IEE Proc., Optoelectron. 138(5), 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, Experimental and theoretical quantification,” IEE Proc., Optoelectron. 138(5), 355–364 (1991).
[Crossref]

Ahmad, H.

M. Z. Muhammad, A. A. Jasim, H. Ahmad, A. Arof, and S. W. Harun, “Non-adiabatic silica microfiber for strain and temperature sensors,” Sens. Actuators A Phys. 192, 130–132 (2013).
[Crossref]

Arof, A.

M. Z. Muhammad, A. A. Jasim, H. Ahmad, A. Arof, and S. W. Harun, “Non-adiabatic silica microfiber for strain and temperature sensors,” Sens. Actuators A Phys. 192, 130–132 (2013).
[Crossref]

Balcer, H. I.

H. I. Balcer, H. J. Kwon, and K. A. Kang, “Assay procedure optimization of a rapid, reusable protein immunosensor for physiological samples,” Ann. Biomed. Eng. 30(1), 141–147 (2002).
[Crossref] [PubMed]

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg Gratings as highsensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, Adiabaticity criteria,” IEE Proc., Optoelectron. 138(5), 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, Experimental and theoretical quantification,” IEE Proc., Optoelectron. 138(5), 355–364 (1991).
[Crossref]

Cai, H.

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg Gratings as highsensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg Gratings as highsensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Dai, Y.

Deng, M.

Ding, H.

Duan, D. W.

El-Sayed, M. A.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Fang, X.

Farrell, G.

Feng, Z. Y.

Ghezelayagh, M. H.

M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Gholami, M.

M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg Gratings as highsensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Gong, Y.

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–781 (2011).
[Crossref]

Gonthier, F.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, Experimental and theoretical quantification,” IEE Proc., Optoelectron. 138(5), 355–364 (1991).
[Crossref]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, Adiabaticity criteria,” IEE Proc., Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Guo, F.

Guo, J.

Guo, T.

Han, M.

Harun, S. W.

M. Z. Muhammad, A. A. Jasim, H. Ahmad, A. Arof, and S. W. Harun, “Non-adiabatic silica microfiber for strain and temperature sensors,” Sens. Actuators A Phys. 192, 130–132 (2013).
[Crossref]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, Adiabaticity criteria,” IEE Proc., Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Hosseini, S. M.

M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Hu, D. J. J.

Hu, M. L.

Hu, T.

Hu, Y.

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg Gratings as highsensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Jasim, A. A.

M. Z. Muhammad, A. A. Jasim, H. Ahmad, A. Arof, and S. W. Harun, “Non-adiabatic silica microfiber for strain and temperature sensors,” Sens. Actuators A Phys. 192, 130–132 (2013).
[Crossref]

Jiang, M.

Jin, W.

Ju, J.

Kang, K. A.

H. I. Balcer, H. J. Kwon, and K. A. Kang, “Assay procedure optimization of a rapid, reusable protein immunosensor for physiological samples,” Ann. Biomed. Eng. 30(1), 141–147 (2002).
[Crossref] [PubMed]

Karami, K.

M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Kwon, H. J.

H. I. Balcer, H. J. Kwon, and K. A. Kang, “Assay procedure optimization of a rapid, reusable protein immunosensor for physiological samples,” Ann. Biomed. Eng. 30(1), 141–147 (2002).
[Crossref] [PubMed]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, Adiabaticity criteria,” IEE Proc., Optoelectron. 138(5), 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, Experimental and theoretical quantification,” IEE Proc., Optoelectron. 138(5), 355–364 (1991).
[Crossref]

Latifi, H.

M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]

Liao, C. R.

Lim, J. L.

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, Adiabaticity criteria,” IEE Proc., Optoelectron. 138(5), 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, Experimental and theoretical quantification,” IEE Proc., Optoelectron. 138(5), 355–364 (1991).
[Crossref]

Lu, Y.

Luan, F.

Ma, L.

Ma, Y.

Muhammad, M. Z.

M. Z. Muhammad, A. A. Jasim, H. Ahmad, A. Arof, and S. W. Harun, “Non-adiabatic silica microfiber for strain and temperature sensors,” Sens. Actuators A Phys. 192, 130–132 (2013).
[Crossref]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Pan, N.

Qiao, X. G.

Rao, Y. J.

Rao, Y.-J.

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–781 (2011).
[Crossref]

T. Zhu, Y.-J. Rao, J.-L. Wang, and Y. Song, “A highly sensitive fiber-optic refractive indexsensor based on an edge-written long-period fiber grating,” IEEE Photon. Technol. Lett. 19(24), 1946–1948 (2007).
[Crossref]

Ren, W.

Rong, Q. Z.

Semenova, Y.

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Shi, L. L.

Shum, P. P.

Song, Y.

T. Zhu, Y.-J. Rao, J.-L. Wang, and Y. Song, “A highly sensitive fiber-optic refractive indexsensor based on an edge-written long-period fiber grating,” IEEE Photon. Technol. Lett. 19(24), 1946–1948 (2007).
[Crossref]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, Adiabaticity criteria,” IEE Proc., Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Tian, Z.

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Tong, W. J.

Wang, D. N.

Wang, J.-L.

T. Zhu, Y.-J. Rao, J.-L. Wang, and Y. Song, “A highly sensitive fiber-optic refractive indexsensor based on an edge-written long-period fiber grating,” IEEE Photon. Technol. Lett. 19(24), 1946–1948 (2007).
[Crossref]

Wang, P.

Wang, R. H.

Wang, X.

Wang, Y.

Wang, Y. X.

Wei, H.

Wei, H. F.

Weng, Y. Y.

Wu, D.

Wu, Q.

Wu, Y.

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–781 (2011).
[Crossref]

Yam, S. S.-H.

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Yao, J.

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]

Zhang, J.

Zhao, T.

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–781 (2011).
[Crossref]

Zhu, T.

D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
[Crossref] [PubMed]

T. Zhu, Y.-J. Rao, J.-L. Wang, and Y. Song, “A highly sensitive fiber-optic refractive indexsensor based on an edge-written long-period fiber grating,” IEEE Photon. Technol. Lett. 19(24), 1946–1948 (2007).
[Crossref]

Zibaii, M. I.

M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Ann. Biomed. Eng. (1)

H. I. Balcer, H. J. Kwon, and K. A. Kang, “Assay procedure optimization of a rapid, reusable protein immunosensor for physiological samples,” Ann. Biomed. Eng. 30(1), 141–147 (2002).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]

IEE Proc., Optoelectron. (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, Adiabaticity criteria,” IEE Proc., Optoelectron. 138(5), 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, Experimental and theoretical quantification,” IEE Proc., Optoelectron. 138(5), 355–364 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (4)

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

T. Zhu, Y.-J. Rao, J.-L. Wang, and Y. Song, “A highly sensitive fiber-optic refractive indexsensor based on an edge-written long-period fiber grating,” IEEE Photon. Technol. Lett. 19(24), 1946–1948 (2007).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg Gratings as highsensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–781 (2011).
[Crossref]

J. Phys. Chem. B (1)

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Sens. Actuators A Phys. (1)

M. Z. Muhammad, A. A. Jasim, H. Ahmad, A. Arof, and S. W. Harun, “Non-adiabatic silica microfiber for strain and temperature sensors,” Sens. Actuators A Phys. 192, 130–132 (2013).
[Crossref]

Sens. Actuators B Chem. (1)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Other (1)

A. Ghatak, Optics, (McGraw-Hill, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of SMTF, the downtaper (a) and uptaper regions (b) are the transition regions where the coupling and recombination of modes occur.
Fig. 2
Fig. 2 Microscopic image of S1 at (a) tapered region and (b) waist region.
Fig. 3
Fig. 3 (a) Experimental setup of RI and protein sensors based on SMTF and (b) measured optical spectrum before and after tapering process.
Fig. 4
Fig. 4 (a) Transmission spectra of SMTF sensor (S3) with different RIs of NaCl and (b) wavelength shift of SMTF sensors (S1, S2 and S3) with different RIs of NaCl.
Fig. 5
Fig. 5 (a) Transmission spectra of SMTF sensor (S1) with different concentration of gelatin and (b) wavelength shift of SMTF sensors (S1, S2 and S3) with different concentration of gelatin.

Tables (1)

Tables Icon

Table 1 Taper Profiles with Waist Diameters, d Is Fixed at 15 μm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I T = I c o + I c l + 2 I c o I c l cos ( Δ ϕ )
Δ ϕ = 2 π λ ( Δ n ) L

Metrics