Abstract

We introduce a metacoaxial nanoantenna (MN) that super-localizes the incident electromagnetic field to “hotspots” with a top-down area of 2 nm2, a local field enhancement of ~200-400, and a field localization with a very large spectral range from the visible to the infrared range that has a spectral bandwidth ≥900 nm. Not only is this nanoantenna extremely broadband with ultra-high localization, it also shows significant improvements over traditional nanoantenna designs, as the hotspots are re-configurable by breaking the circular symmetry which enables the ability to tailor the polarization response. These attributes offer significant improvements over traditional nanoantennas as building blocks for metasurfaces and enhanced biodetection that we demonstrate in this work.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas

Semih Cakmakyapan, Neval A. Cinel, Atilla Ozgur Cakmak, and Ekmel Ozbay
Opt. Express 22(16) 19504-19512 (2014)

Dual-polarization star-gap nano-antenna

Monir Morshed, Lei Xu, and Haroldo T. Hattori
J. Opt. Soc. Am. B 36(10) 2913-2919 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 312–315 (2010).
  3. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  4. A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
    [Crossref]
  5. P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20(22), 4300–4305 (2008).
    [Crossref]
  6. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
    [Crossref]
  7. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
    [Crossref] [PubMed]
  8. L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical properties of the crescent-shaped nanohole antenna,” Nano Lett. 9(5), 1956–1961 (2009).
    [Crossref] [PubMed]
  9. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref] [PubMed]
  10. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
    [Crossref] [PubMed]
  11. R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
    [Crossref]
  12. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  13. I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19(S1), A64–A71 (2011).
    [Crossref] [PubMed]
  14. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
    [Crossref] [PubMed]
  15. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
    [Crossref]
  16. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
  17. V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, “Enhancing optical gradient forces with metamaterials,” Phys. Rev. Lett. 110(5), 057401 (2013).
    [Crossref] [PubMed]
  18. H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  19. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
    [Crossref]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  21. R. Iovine, L. La Spada, and L. Vegni, “Modified bow-tie nanoparticles operating in the visible and near infrared frequency regime,” Adv. Nanoparticles 2(1), 21–27 (2013).
    [Crossref]
  22. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
    [Crossref] [PubMed]
  23. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
    [Crossref]
  24. R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
    [Crossref] [PubMed]
  25. Y. Peng, X. Wang, and K. Kempa, “TEM-like optical mode of a coaxial nanowaveguide,” Opt. Express 16(3), 1758–1763 (2008).
    [Crossref] [PubMed]
  26. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
    [Crossref] [PubMed]
  27. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008).
    [Crossref] [PubMed]

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2013 (3)

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, “Enhancing optical gradient forces with metamaterials,” Phys. Rev. Lett. 110(5), 057401 (2013).
[Crossref] [PubMed]

R. Iovine, L. La Spada, and L. Vegni, “Modified bow-tie nanoparticles operating in the visible and near infrared frequency regime,” Adv. Nanoparticles 2(1), 21–27 (2013).
[Crossref]

2012 (1)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

2011 (3)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19(S1), A64–A71 (2011).
[Crossref] [PubMed]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 312–315 (2010).

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

2009 (4)

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical properties of the crescent-shaped nanohole antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[Crossref]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

2008 (6)

Y. Peng, X. Wang, and K. Kempa, “TEM-like optical mode of a coaxial nanowaveguide,” Opt. Express 16(3), 1758–1763 (2008).
[Crossref] [PubMed]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008).
[Crossref] [PubMed]

H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20(22), 4300–4305 (2008).
[Crossref]

2007 (1)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).

2006 (1)

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

2005 (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Agio, M.

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

Alù, A.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Ambekar, R.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[Crossref]

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

Bakker, R. M.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

Berkovitch, N.

Biagioni, P.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Boltasseva, A.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Burgos, S. P.

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

de Waele, R.

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

Diukman, I.

Drachev, V. P.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Duò, L.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Eres, G.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[Crossref]

Fang, N. X.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Feng, L.

Finazzi, M.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Fischer, H.

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Fung, K. H.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Gaddis, A. L.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

García-Parajó, M. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Ginis, V.

V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, “Enhancing optical gradient forces with metamaterials,” Phys. Rev. Lett. 110(5), 057401 (2013).
[Crossref] [PubMed]

Gresillon, S.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Gu, B.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Hatab, N. A.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hsueh, C. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Huang, J. S.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Iovine, R.

R. Iovine, L. La Spada, and L. Vegni, “Modified bow-tie nanoparticles operating in the visible and near infrared frequency regime,” Adv. Nanoparticles 2(1), 21–27 (2013).
[Crossref]

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Kempa, K.

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Kildishev, A. V.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[Crossref]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Ko, K. D.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).

Kumar, A.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

La Spada, L.

R. Iovine, L. La Spada, and L. Vegni, “Modified bow-tie nanoparticles operating in the visible and near infrared frequency regime,” Adv. Nanoparticles 2(1), 21–27 (2013).
[Crossref]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Lee, L. P.

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical properties of the crescent-shaped nanohole antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

Li, J. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Liu, G. L.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Liu, Z.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008).
[Crossref] [PubMed]

Martin, O. J.

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Mivelle, M.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008).
[Crossref] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Mohammadi, A.

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

Moparthi, S. B.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[Crossref]

Nezhad, M. P.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 312–315 (2010).

Orenstein, M.

Pedersen, R. H.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Peng, Y.

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

Pramod, P.

P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20(22), 4300–4305 (2008).
[Crossref]

Punj, D.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Retterer, S. T.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Rigneault, H.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Ross, B. M.

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical properties of the crescent-shaped nanohole antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

Sandoghdar, V.

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).

Shalaev, V. M.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Slutsky, B. A.

Soukoulis, C. M.

V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, “Enhancing optical gradient forces with metamaterials,” Phys. Rev. Lett. 110(5), 057401 (2013).
[Crossref] [PubMed]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).

Tassin, P.

V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, “Enhancing optical gradient forces with metamaterials,” Phys. Rev. Lett. 110(5), 057401 (2013).
[Crossref] [PubMed]

Tessler, N.

Thomas, K. G.

P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20(22), 4300–4305 (2008).
[Crossref]

Toussaint, K. C.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Tzabari, L.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 312–315 (2010).

van Hulst, N. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

van Zanten, T. S.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Vegni, L.

R. Iovine, L. La Spada, and L. Vegni, “Modified bow-tie nanoparticles operating in the visible and near infrared frequency regime,” Adv. Nanoparticles 2(1), 21–27 (2013).
[Crossref]

Veretennicoff, I.

V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, “Enhancing optical gradient forces with metamaterials,” Phys. Rev. Lett. 110(5), 057401 (2013).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Wang, X.

Wenger, J.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Wu, L. Y.

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical properties of the crescent-shaped nanohole antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[Crossref]

Yuan, H. K.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Zhang, Z.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Adv. Mater. (1)

P. Pramod and K. G. Thomas, “Plasmon coupling in dimers of Au nanorods,” Adv. Mater. 20(22), 4300–4305 (2008).
[Crossref]

Adv. Nanoparticles (1)

R. Iovine, L. La Spada, and L. Vegni, “Modified bow-tie nanoparticles operating in the visible and near infrared frequency regime,” Adv. Nanoparticles 2(1), 21–27 (2013).
[Crossref]

Appl. Phys. Lett. (1)

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Nano Lett. (6)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical properties of the crescent-shaped nanohole antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Nat. Photon. (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 312–315 (2010).

Nature (1)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Phys. Rev. Lett. (2)

V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, “Enhancing optical gradient forces with metamaterials,” Phys. Rev. Lett. 110(5), 057401 (2013).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Science (2)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of metacoaxial nanoantenna: Free space optical mode incident on the antenna excites a transverse resonance of the coaxial waveguide. The operation at optical frequencies leads to excitation of localized plasmon modes and the introduced tip geometry in the inner section of the MN leads to surface plasmon localization. Typical dimensions of the metacoxial antenna are: radia RE = 200 nm, Ro = 130 nm, Ri = 55 nm; gap, g = 10 nm-20 nm; thickness, w = 20 nm. Inset: Defects defined by position, θ = ± 26° and size Δθ = 31° are added to break the circular symmetry of the MN. MN left-handed defect (top) and right-handed defect (bottom) allow anisotropic field localization for incident radiation with clockwise and counterclockwise polarization states, respectively.
Fig. 2
Fig. 2 (a) FEM simulation results of field distribution for excited localized plasmon mode of MN showing strong field localization at the tip geometry of each inner prong. (b) The numerical results showing spatial field localization of the MN; the 3dB projection shows the FWHM crossection of the “hotspot”. E field is localized to a spot with an area at FWHM of ~1 nm x 2 nm. (c) Numerical results of local field enhancement, α vs wavelength (optical frequency) of the excitation field for MN and other antennas with various gap sizes. The local field enhancement of the MN has a very broad spectral response. This is due to the characteristics from the coaxial geometry where numerous transverse modes are supported by the antenna giving rise to spectrally broad band operation. (d) Numerical results of α for MN with left-handed and right-handed defects (see Fig. 1), showing asymmetric responses to excitation with optical fields prepared with clockwise and counterclockwise circular polarization states.
Fig. 3
Fig. 3 (a) SEM image of MN with a gap of 14 nm. (b) MN with left-handed defect. RE = 202 nm, Ro = 133 nm, Ri = 54 nm; θ = −27°, Δθ = 32°. (c) MN with right-handed defect. θ = 27°, Δθ = 34°.
Fig. 4
Fig. 4 Experimental characterization of the MNs: (a) Fluorescence intensity measurement performed on sample with parallel arrays of bowties (BTs) and MNs. The inset image shows the fluorescence image at λ = 814 nm, with scattered light λ < 810 nm (including the 785 nm laser) filtered out. Further information regarding sample layout and experimental setup is available in the supplementary material. (b) Measured polarization dependence of MN with broken symmetry due to introduction of left-handed and right-handed defects. Polarization varied from left hand circular polarization through elliptical and linear polarizations to right hand circular polarization. Approximately 4 dB extinction ratio was achieved. Error bars represent one standard deviation. Renormalized numeric curves are added for comparison.
Fig. 5
Fig. 5 SERS measurements of metacoaxial and bowtie antennas with benzenthiol monolayer. (a) Raw measurement (b) Measurement normalized to SiO2 background. Even while significantly off of the metacoaxial’s peak resonance, and with three times fewer actual antennas per unit area then the bowties, the metacoaxial surface was clearly superior to that of the bowties for SERS.

Metrics