Abstract

Butterfly wing scales containing photonic nanoarchitectures act as chemically selective sensors due to their color change when mixing vapors in the atmosphere. Based on butterfly vision, we built a model for efficient characterization of the spectral changes in different atmospheres. The spectral shift is vapor specific and proportional with the vapor concentration. Results were compared to standard principal component analysis. The modification of the chemical properties of the scale surface by the deposition of 5 nm of Al2O3 significantly alters the character of the optical response. This is proof of the possibility to purposefully tune the selectivity of such sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vapor sensing with a natural photonic cell

Sébastien R. Mouchet, Tijani Tabarrant, Stéphane Lucas, Bao-Lian Su, Pete Vukusic, and Olivier Deparis
Opt. Express 24(11) 12267-12280 (2016)

Imaging scatterometry of butterfly wing scales

D.G. Stavenga, H.L. Leertouwer, P. Pirih, and M.F. Wehling
Opt. Express 17(1) 193-202 (2009)

Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies

D. G. Stavenga, M. A. Giraldo, and B. J. Hoenders
Opt. Express 14(11) 4880-4890 (2006)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
    [Crossref]
  2. O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
    [Crossref]
  3. R. A. Potyrailo and R. R. Naik, “Bionanomaterials and bioinspired nanostructures for selective vapor sensing,” Annu. Rev. Mater. Res. 43(1), 307–334 (2013).
    [Crossref]
  4. K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
    [Crossref]
  5. J. D. Joannopoulos, R. Meade, and D. J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  6. L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
    [Crossref]
  7. C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors 13(4), 4694–4713 (2013).
    [Crossref] [PubMed]
  8. R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34(3), 89–134 (2010).
    [Crossref]
  9. J. Shin, P. V. Braun, and W. Lee, “Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal,” Sens. Actuators B Chem. 150(1), 183–190 (2010).
    [Crossref]
  10. L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
    [Crossref]
  11. Z. Bálint, K. Kertész, G. Piszter, Z. Vértesy, and L. P. Biró, “The well-tuned Blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae),” J. R. Soc. Interface 9(73), 1745–1756 (2012).
    [Crossref] [PubMed]
  12. Z. Bálint, J. Wojtusiak, G. Piszter, K. Kertész, and L. P. Biró, “Spectroboard: an instrument for measuring spectral characteristics of butterfly wings – a new tool for taxonomists,” Genus 21, 1–6 (2010).
  13. M. P. Sison-Mangus, A. D. Briscoe, G. Zaccardi, H. Knüttel, and A. Kelber, “The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green,” J. Exp. Biol. 211(3), 361–369 (2008).
    [Crossref] [PubMed]
  14. D. G. Stavenga and K. Arikawa, “Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(4), 373–385 (2011).
    [Crossref] [PubMed]
  15. P.-J. Chen, K. Arikawa, and E.-C. Yang, “Diversity of the photoreceptors and spectral opponency in the compound eye of the Golden Birdwing, Troides aeacus formosanus,” PLoS ONE 8(4), e62240 (2013).
    [Crossref] [PubMed]
  16. K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Selective optical gas sensors using butterfly wing scales nanostructures,” Key Eng. Mater. 543, 97–100 (2013).
    [Crossref]
  17. L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
    [Crossref] [PubMed]
  18. K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
    [Crossref] [PubMed]
  19. Y. Ohno, “CIE Fundamentals for color measurements,” in Int. Conf. on Digital Printing Technologies, 15–20 October 2000, Vancouver, Canada (2000), pp. 540–545.
  20. I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer-Verlag, 2002).
  21. G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Color based discrimination of chitin–air nanocomposites in butterfly scales and their role in conspecific recognition,” Anal. Methods 3(1), 78–81 (2011).
    [Crossref]
  22. S. Mouchet, O. Deparis, and J. P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
    [Crossref]
  23. K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).
  24. Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
    [Crossref] [PubMed]
  25. S. H. Tan, A. L. Ahmad, M. G. M. Nawawi, and H. Hassan, “Separation of aqueous isopropanol through chitosan/poly(vinylalcohol) blended membranes by prevaporation,” IIUM Eng. J. 2, 7–12 (2001).

2014 (1)

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).

2013 (5)

R. A. Potyrailo and R. R. Naik, “Bionanomaterials and bioinspired nanostructures for selective vapor sensing,” Annu. Rev. Mater. Res. 43(1), 307–334 (2013).
[Crossref]

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

P.-J. Chen, K. Arikawa, and E.-C. Yang, “Diversity of the photoreceptors and spectral opponency in the compound eye of the Golden Birdwing, Troides aeacus formosanus,” PLoS ONE 8(4), e62240 (2013).
[Crossref] [PubMed]

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Selective optical gas sensors using butterfly wing scales nanostructures,” Key Eng. Mater. 543, 97–100 (2013).
[Crossref]

2012 (2)

Z. Bálint, K. Kertész, G. Piszter, Z. Vértesy, and L. P. Biró, “The well-tuned Blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae),” J. R. Soc. Interface 9(73), 1745–1756 (2012).
[Crossref] [PubMed]

S. Mouchet, O. Deparis, and J. P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

2011 (3)

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Color based discrimination of chitin–air nanocomposites in butterfly scales and their role in conspecific recognition,” Anal. Methods 3(1), 78–81 (2011).
[Crossref]

D. G. Stavenga and K. Arikawa, “Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(4), 373–385 (2011).
[Crossref] [PubMed]

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
[Crossref]

2010 (3)

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34(3), 89–134 (2010).
[Crossref]

J. Shin, P. V. Braun, and W. Lee, “Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal,” Sens. Actuators B Chem. 150(1), 183–190 (2010).
[Crossref]

Z. Bálint, J. Wojtusiak, G. Piszter, K. Kertész, and L. P. Biró, “Spectroboard: an instrument for measuring spectral characteristics of butterfly wings – a new tool for taxonomists,” Genus 21, 1–6 (2010).

2008 (4)

M. P. Sison-Mangus, A. D. Briscoe, G. Zaccardi, H. Knüttel, and A. Kelber, “The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green,” J. Exp. Biol. 211(3), 361–369 (2008).
[Crossref] [PubMed]

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

2007 (1)

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

2006 (1)

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

2003 (1)

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

2001 (1)

S. H. Tan, A. L. Ahmad, M. G. M. Nawawi, and H. Hassan, “Separation of aqueous isopropanol through chitosan/poly(vinylalcohol) blended membranes by prevaporation,” IIUM Eng. J. 2, 7–12 (2001).

Ahmad, A. L.

S. H. Tan, A. L. Ahmad, M. G. M. Nawawi, and H. Hassan, “Separation of aqueous isopropanol through chitosan/poly(vinylalcohol) blended membranes by prevaporation,” IIUM Eng. J. 2, 7–12 (2001).

Araújo, F. M.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Arikawa, K.

P.-J. Chen, K. Arikawa, and E.-C. Yang, “Diversity of the photoreceptors and spectral opponency in the compound eye of the Golden Birdwing, Troides aeacus formosanus,” PLoS ONE 8(4), e62240 (2013).
[Crossref] [PubMed]

D. G. Stavenga and K. Arikawa, “Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(4), 373–385 (2011).
[Crossref] [PubMed]

Baji, Z.

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).

Balázs, J.

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Bálint, Z.

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Selective optical gas sensors using butterfly wing scales nanostructures,” Key Eng. Mater. 543, 97–100 (2013).
[Crossref]

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Z. Bálint, K. Kertész, G. Piszter, Z. Vértesy, and L. P. Biró, “The well-tuned Blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae),” J. R. Soc. Interface 9(73), 1745–1756 (2012).
[Crossref] [PubMed]

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Color based discrimination of chitin–air nanocomposites in butterfly scales and their role in conspecific recognition,” Anal. Methods 3(1), 78–81 (2011).
[Crossref]

Z. Bálint, J. Wojtusiak, G. Piszter, K. Kertész, and L. P. Biró, “Spectroboard: an instrument for measuring spectral characteristics of butterfly wings – a new tool for taxonomists,” Genus 21, 1–6 (2010).

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Biró, L.

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

Biró, L. P.

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Selective optical gas sensors using butterfly wing scales nanostructures,” Key Eng. Mater. 543, 97–100 (2013).
[Crossref]

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Z. Bálint, K. Kertész, G. Piszter, Z. Vértesy, and L. P. Biró, “The well-tuned Blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae),” J. R. Soc. Interface 9(73), 1745–1756 (2012).
[Crossref] [PubMed]

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
[Crossref]

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Color based discrimination of chitin–air nanocomposites in butterfly scales and their role in conspecific recognition,” Anal. Methods 3(1), 78–81 (2011).
[Crossref]

Z. Bálint, J. Wojtusiak, G. Piszter, K. Kertész, and L. P. Biró, “Spectroboard: an instrument for measuring spectral characteristics of butterfly wings – a new tool for taxonomists,” Genus 21, 1–6 (2010).

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Braun, P. V.

J. Shin, P. V. Braun, and W. Lee, “Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal,” Sens. Actuators B Chem. 150(1), 183–190 (2010).
[Crossref]

Briscoe, A. D.

M. P. Sison-Mangus, A. D. Briscoe, G. Zaccardi, H. Knüttel, and A. Kelber, “The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green,” J. Exp. Biol. 211(3), 361–369 (2008).
[Crossref] [PubMed]

Chen, P.-J.

P.-J. Chen, K. Arikawa, and E.-C. Yang, “Diversity of the photoreceptors and spectral opponency in the compound eye of the Golden Birdwing, Troides aeacus formosanus,” PLoS ONE 8(4), e62240 (2013).
[Crossref] [PubMed]

Cournoyer, J. R.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Deparis, O.

S. Mouchet, O. Deparis, and J. P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

Ding, Y.

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

Dovidenko, K.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Ferreira, L. A.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Frazão, O.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Ghiradella, H.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Hassan, H.

S. H. Tan, A. L. Ahmad, M. G. M. Nawawi, and H. Hassan, “Separation of aqueous isopropanol through chitosan/poly(vinylalcohol) blended membranes by prevaporation,” IIUM Eng. J. 2, 7–12 (2001).

Horváth, Z.

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Jakab, E.

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Selective optical gas sensors using butterfly wing scales nanostructures,” Key Eng. Mater. 543, 97–100 (2013).
[Crossref]

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Kelber, A.

M. P. Sison-Mangus, A. D. Briscoe, G. Zaccardi, H. Knüttel, and A. Kelber, “The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green,” J. Exp. Biol. 211(3), 361–369 (2008).
[Crossref] [PubMed]

Kertész, K.

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Selective optical gas sensors using butterfly wing scales nanostructures,” Key Eng. Mater. 543, 97–100 (2013).
[Crossref]

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Z. Bálint, K. Kertész, G. Piszter, Z. Vértesy, and L. P. Biró, “The well-tuned Blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae),” J. R. Soc. Interface 9(73), 1745–1756 (2012).
[Crossref] [PubMed]

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Color based discrimination of chitin–air nanocomposites in butterfly scales and their role in conspecific recognition,” Anal. Methods 3(1), 78–81 (2011).
[Crossref]

Z. Bálint, J. Wojtusiak, G. Piszter, K. Kertész, and L. P. Biró, “Spectroboard: an instrument for measuring spectral characteristics of butterfly wings – a new tool for taxonomists,” Genus 21, 1–6 (2010).

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Kiricsi, I.

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Knüttel, H.

M. P. Sison-Mangus, A. D. Briscoe, G. Zaccardi, H. Knüttel, and A. Kelber, “The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green,” J. Exp. Biol. 211(3), 361–369 (2008).
[Crossref] [PubMed]

Lee, W.

J. Shin, P. V. Braun, and W. Lee, “Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal,” Sens. Actuators B Chem. 150(1), 183–190 (2010).
[Crossref]

Lousse, V.

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Márk, G.

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Méhn, D.

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Mouchet, S.

S. Mouchet, O. Deparis, and J. P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

Naik, R. R.

R. A. Potyrailo and R. R. Naik, “Bionanomaterials and bioinspired nanostructures for selective vapor sensing,” Annu. Rev. Mater. Res. 43(1), 307–334 (2013).
[Crossref]

Nair, R. V.

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34(3), 89–134 (2010).
[Crossref]

Nawawi, M. G. M.

S. H. Tan, A. L. Ahmad, M. G. M. Nawawi, and H. Hassan, “Separation of aqueous isopropanol through chitosan/poly(vinylalcohol) blended membranes by prevaporation,” IIUM Eng. J. 2, 7–12 (2001).

Ohno, Y.

Y. Ohno, “CIE Fundamentals for color measurements,” in Int. Conf. on Digital Printing Technologies, 15–20 October 2000, Vancouver, Canada (2000), pp. 540–545.

Olson, E.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Pacholski, C.

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

Piszter, G.

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Selective optical gas sensors using butterfly wing scales nanostructures,” Key Eng. Mater. 543, 97–100 (2013).
[Crossref]

Z. Bálint, K. Kertész, G. Piszter, Z. Vértesy, and L. P. Biró, “The well-tuned Blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae),” J. R. Soc. Interface 9(73), 1745–1756 (2012).
[Crossref] [PubMed]

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Color based discrimination of chitin–air nanocomposites in butterfly scales and their role in conspecific recognition,” Anal. Methods 3(1), 78–81 (2011).
[Crossref]

Z. Bálint, J. Wojtusiak, G. Piszter, K. Kertész, and L. P. Biró, “Spectroboard: an instrument for measuring spectral characteristics of butterfly wings – a new tool for taxonomists,” Genus 21, 1–6 (2010).

Potyrailo, R. A.

R. A. Potyrailo and R. R. Naik, “Bionanomaterials and bioinspired nanostructures for selective vapor sensing,” Annu. Rev. Mater. Res. 43(1), 307–334 (2013).
[Crossref]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Rassart, M.

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

Santos, J. L.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

Shin, J.

J. Shin, P. V. Braun, and W. Lee, “Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal,” Sens. Actuators B Chem. 150(1), 183–190 (2010).
[Crossref]

Sison-Mangus, M. P.

M. P. Sison-Mangus, A. D. Briscoe, G. Zaccardi, H. Knüttel, and A. Kelber, “The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green,” J. Exp. Biol. 211(3), 361–369 (2008).
[Crossref] [PubMed]

Stavenga, D. G.

D. G. Stavenga and K. Arikawa, “Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(4), 373–385 (2011).
[Crossref] [PubMed]

Tan, S. H.

S. H. Tan, A. L. Ahmad, M. G. M. Nawawi, and H. Hassan, “Separation of aqueous isopropanol through chitosan/poly(vinylalcohol) blended membranes by prevaporation,” IIUM Eng. J. 2, 7–12 (2001).

Vértesy, Z.

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Selective optical gas sensors using butterfly wing scales nanostructures,” Key Eng. Mater. 543, 97–100 (2013).
[Crossref]

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Z. Bálint, K. Kertész, G. Piszter, Z. Vértesy, and L. P. Biró, “The well-tuned Blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae),” J. R. Soc. Interface 9(73), 1745–1756 (2012).
[Crossref] [PubMed]

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Color based discrimination of chitin–air nanocomposites in butterfly scales and their role in conspecific recognition,” Anal. Methods 3(1), 78–81 (2011).
[Crossref]

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Vertiatchikh, A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Vigneron, J.

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

Vigneron, J. P.

S. Mouchet, O. Deparis, and J. P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
[Crossref]

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

Vijaya, R.

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34(3), 89–134 (2010).
[Crossref]

Wang, A. C.

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

Wang, M. H.

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

Wang, Z. L.

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

Wojtusiak, J.

Z. Bálint, J. Wojtusiak, G. Piszter, K. Kertész, and L. P. Biró, “Spectroboard: an instrument for measuring spectral characteristics of butterfly wings – a new tool for taxonomists,” Genus 21, 1–6 (2010).

Wong, C. P.

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

Xiu, Y.

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

Xu, S.

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

Yang, E.-C.

P.-J. Chen, K. Arikawa, and E.-C. Yang, “Diversity of the photoreceptors and spectral opponency in the compound eye of the Golden Birdwing, Troides aeacus formosanus,” PLoS ONE 8(4), e62240 (2013).
[Crossref] [PubMed]

Zaccardi, G.

M. P. Sison-Mangus, A. D. Briscoe, G. Zaccardi, H. Knüttel, and A. Kelber, “The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green,” J. Exp. Biol. 211(3), 361–369 (2008).
[Crossref] [PubMed]

Zhang, Y.

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

Anal. Methods (1)

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Color based discrimination of chitin–air nanocomposites in butterfly scales and their role in conspecific recognition,” Anal. Methods 3(1), 78–81 (2011).
[Crossref]

Annu. Rev. Mater. Res. (1)

R. A. Potyrailo and R. R. Naik, “Bionanomaterials and bioinspired nanostructures for selective vapor sensing,” Annu. Rev. Mater. Res. 43(1), 307–334 (2013).
[Crossref]

Appl. Surf. Sci. (1)

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Chem. Sensors (1)

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Sensors 4, 17 (2014).

Genus (1)

Z. Bálint, J. Wojtusiak, G. Piszter, K. Kertész, and L. P. Biró, “Spectroboard: an instrument for measuring spectral characteristics of butterfly wings – a new tool for taxonomists,” Genus 21, 1–6 (2010).

IIUM Eng. J. (1)

S. H. Tan, A. L. Ahmad, M. G. M. Nawawi, and H. Hassan, “Separation of aqueous isopropanol through chitosan/poly(vinylalcohol) blended membranes by prevaporation,” IIUM Eng. J. 2, 7–12 (2001).

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. (1)

D. G. Stavenga and K. Arikawa, “Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(4), 373–385 (2011).
[Crossref] [PubMed]

J. Exp. Biol. (1)

M. P. Sison-Mangus, A. D. Briscoe, G. Zaccardi, H. Knüttel, and A. Kelber, “The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green,” J. Exp. Biol. 211(3), 361–369 (2008).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

Z. Bálint, K. Kertész, G. Piszter, Z. Vértesy, and L. P. Biró, “The well-tuned Blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae),” J. R. Soc. Interface 9(73), 1745–1756 (2012).
[Crossref] [PubMed]

Key Eng. Mater. (1)

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Selective optical gas sensors using butterfly wing scales nanostructures,” Key Eng. Mater. 543, 97–100 (2013).
[Crossref]

Laser Photon. Rev. (2)

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[Crossref]

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
[Crossref]

Nanotechnology (1)

Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. Xiu, C. P. Wong, and Z. L. Wang, “Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry,” Nanotechnology 19(35), 355708 (2008).
[Crossref] [PubMed]

Nat. Photon. (1)

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. Márk, Z. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003).
[Crossref] [PubMed]

K. Kertész, Z. Bálint, Z. Vértesy, G. Márk, V. Lousse, J. Vigneron, M. Rassart, and L. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[Crossref] [PubMed]

PLoS ONE (1)

P.-J. Chen, K. Arikawa, and E.-C. Yang, “Diversity of the photoreceptors and spectral opponency in the compound eye of the Golden Birdwing, Troides aeacus formosanus,” PLoS ONE 8(4), e62240 (2013).
[Crossref] [PubMed]

Proc. SPIE (2)

S. Mouchet, O. Deparis, and J. P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

Prog. Quantum Electron. (1)

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34(3), 89–134 (2010).
[Crossref]

Sens. Actuators B Chem. (1)

J. Shin, P. V. Braun, and W. Lee, “Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal,” Sens. Actuators B Chem. 150(1), 183–190 (2010).
[Crossref]

Sensors (1)

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

Other (3)

J. D. Joannopoulos, R. Meade, and D. J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Y. Ohno, “CIE Fundamentals for color measurements,” in Int. Conf. on Digital Printing Technologies, 15–20 October 2000, Vancouver, Canada (2000), pp. 540–545.

I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer-Verlag, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) male Polyommatus icarus butterfly and (b) the blue dorsal wing scales of this species. (c) SEM and (d) TEM images of the chitin - air nanoarchitecture occurring in the blue wing scales.
Fig. 2
Fig. 2 (a) The alteration of the normalized reflectance spectrum of the Polyommatus icarus blue wing if the surrounding atmosphere is changed to artificial air – vapor mixtures in different concentrations. (b) Relative reflectance spectra of the same vapor sensing experiment when the P. icarus wing reflectance in artificial air flow was used as a reference.
Fig. 3
Fig. 3 The variation of the reflectance maximum integrated in the 450 – 550 nm wavelength range (see Fig. 2(b)) can be seen during the 20 minute long vapor sensing experiment using ethanol. The time-dependent signal rises and drops off in a few seconds (the magnified part of the curve can be seen in the inset) and it is proportional with the vapor concentration.
Fig. 4
Fig. 4 (a) The result of the vapor sensing experiments in the 3D chromaticity diagram using 7 vapors at 10 concentrations. One can see the lower concentrations on the right and the higher concentrations on the left (the point corresponding to artificial air is labeled by red circle). (b) 90° rotated version of the 3D chromaticity diagram. One can see that the chromaticity points fit well onto a plane slightly different from the diagonal plain passing through the vertical edges facing the viewer.
Fig. 5
Fig. 5 The results of the vapor sensing experiment in the human, two-dimensional chromaticity diagram (CIE 1931). The chromaticity points of the low vapor concentration are clustered which shows the deficiency of the human visual space to discriminate low concentration vapors.
Fig. 6
Fig. 6 (a) 2D transformed version of the 3D chromaticity diagram containing the results of the vapor sensing experiment. The red circle shows chromaticity point of the initial wing reflectance in artificial air from which the different vapor concentrations can be found right to left in ascending order. (b) The results of the PCA using the same vapor sensing data set.
Fig. 7
Fig. 7 2D transformed chromaticity diagram results of the vapor sensing experiment using the butterfly wing modified with 5 nm conformal Al2O3 coating. The red circle shows chromaticity point of the initial wing reflectance in artificial air flow from which the different vapor concentrations can be found right to left in ascending order.
Fig. 8
Fig. 8 Normalized column diagrams of the transformed chromaticity diagrams which show the distances between consecutive concentration steps for the seven vapors using (a) the pristine butterfly wing (b) and the ALD modified wing. The different colors show the different vapor concentrations. Note that the pristine wing has more than five times higher response. Both for the pristine and for the modified sensor the column height are normalized to the highest value for each sensor used.
Fig. 9
Fig. 9 The slopes of the linear-fitted segments of the vapor sensing trajectories are proportional with the refractive indices of the different volatiles. Acetic acid (10 vol% water mixture) was left out from the linear fit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

X = 300 n m 700 n m Φ ( λ ) R ( λ ) u ( λ ) d λ , Y = 300 n m 700 n m Φ ( λ ) R ( λ ) b ( λ ) d λ , Z = 300 n m 700 n m Φ ( λ ) R ( λ ) g ( λ ) d λ , W = 300 n m 700 n m Φ ( λ ) R ( λ ) y ( λ ) d λ .
x = X X + Y + Z + W , y = Y X + Y + Z + W , z = Z X + Y + Z + W , w = W X + Y + Z + W = 1 x y z .

Metrics