Abstract

A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25nm with about 0.075nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355Hz FWHM.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stable single-polarization single-longitudinal-mode linear cavity erbium-doped fiber laser based on structured chirped fiber Bragg grating

Bin Yin, Zhibo Liu, Suchun Feng, Yunlong Bai, Haisu Li, and Shuisheng Jian
Appl. Opt. 54(1) 6-11 (2015)

Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering

Tao Zhu, Baomei Zhang, Leilei Shi, Shihong Huang, Ming Deng, Jianguo Liu, and Xiong Li
Opt. Express 24(2) 1324-1330 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
    [Crossref]
  3. L. Jin, Y. N. Tan, Z. Quan, M. P. Li, and B. O. Guan, “Strain-insensitive temperature sensing with a dual polarization fiber grating laser,” Opt. Express 20(6), 6021–6028 (2012).
    [Crossref] [PubMed]
  4. V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, and V. B. Tsvetkov, “Single-polarization cladding-pumped Yb-doped fiber laser,” Laser Phys. Lett. 4(10), 740–742 (2007).
    [Crossref]
  5. D. P. Wei, T. J. Li, Y. C. Zhao, and S. S. Jian, “Multiwavelength erbium-doped fiber ring lasers with overlap-written fiber Bragg gratings,” Opt. Lett. 25(16), 1150–1152 (2000).
    [Crossref] [PubMed]
  6. S. L. Pan, X. F. Zhao, and C. Y. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
    [Crossref] [PubMed]
  7. S. L. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
    [Crossref] [PubMed]
  8. L. Bo, J. Meng, T. S. Chuan, and S. Ping, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(18), 1292–1294 (2011).
    [Crossref]
  9. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
    [Crossref]
  10. D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
    [Crossref]
  11. B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
    [Crossref]
  12. S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
    [Crossref]
  13. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
    [Crossref] [PubMed]
  14. S. Yamashita and G. J. Cowle, “Single-polarization operation of fiber distributed feedback (DFB) lasers by injection locking,” J. Lightwave Technol. 17(3), 509–513 (1999).
    [Crossref]
  15. L. R. Chen, D. J. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10(9), 1283–1285 (1998).
    [Crossref]
  16. L. Zhang, K. Sugden, I. Bennion, and A. Molony, “Wide-stopband chirped fibre moiré grating transmission filters,” Electron. Lett. 31(6), 477–479 (1995).
    [Crossref]
  17. H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
    [Crossref]
  18. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  19. Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol. 24(5), 2179–2183 (2006).
    [Crossref]

2014 (1)

B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
[Crossref]

2013 (1)

S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

2012 (1)

2011 (1)

L. Bo, J. Meng, T. S. Chuan, and S. Ping, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

2010 (1)

2009 (2)

2008 (3)

S. L. Pan, X. F. Zhao, and C. Y. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
[Crossref] [PubMed]

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

2007 (2)

V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, and V. B. Tsvetkov, “Single-polarization cladding-pumped Yb-doped fiber laser,” Laser Phys. Lett. 4(10), 740–742 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (2)

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol. 24(5), 2179–2183 (2006).
[Crossref]

2000 (1)

1999 (1)

1998 (2)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

L. R. Chen, D. J. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10(9), 1283–1285 (1998).
[Crossref]

1995 (1)

L. Zhang, K. Sugden, I. Bennion, and A. Molony, “Wide-stopband chirped fibre moiré grating transmission filters,” Electron. Lett. 31(6), 477–479 (1995).
[Crossref]

Bai, Y. L.

B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
[Crossref]

Bennion, I.

L. Zhang, K. Sugden, I. Bennion, and A. Molony, “Wide-stopband chirped fibre moiré grating transmission filters,” Electron. Lett. 31(6), 477–479 (1995).
[Crossref]

Bo, L.

L. Bo, J. Meng, T. S. Chuan, and S. Ping, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, D.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Chen, L. R.

L. R. Chen, D. J. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10(9), 1283–1285 (1998).
[Crossref]

Chen, X. F.

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Cheng, X. P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Chuan, T. S.

L. Bo, J. Meng, T. S. Chuan, and S. Ping, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Cooper, D. J. F.

L. R. Chen, D. J. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10(9), 1283–1285 (1998).
[Crossref]

Cowle, G. J.

Deng, Z. C.

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Feng, S. C.

B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
[Crossref]

S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Feng, T.

S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Feng, Z. M.

Fu, H.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Fuerbach, A.

Guan, B. O.

He, S.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Jian, S. S.

B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
[Crossref]

S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

D. P. Wei, T. J. Li, Y. C. Zhao, and S. S. Jian, “Multiwavelength erbium-doped fiber ring lasers with overlap-written fiber Bragg gratings,” Opt. Lett. 25(16), 1150–1152 (2000).
[Crossref] [PubMed]

Jiang, Z. H.

Jin, L.

Jovanovic, N.

Kaivola, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Kurkov, A. S.

V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, and V. B. Tsvetkov, “Single-polarization cladding-pumped Yb-doped fiber laser,” Laser Phys. Lett. 4(10), 740–742 (2007).
[Crossref]

Li, M. P.

Li, Q.

S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Li, T. J.

Liang, L. J.

B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
[Crossref]

Liu, S.

B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
[Crossref]

Liu, T.

Liu, W.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Liu, Z. B.

B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
[Crossref]

Lou, C. Y.

Lu, S. H.

S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Ludvigsen, H.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Marshall, G. D.

Medvedkov, O. I.

V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, and V. B. Tsvetkov, “Single-polarization cladding-pumped Yb-doped fiber laser,” Laser Phys. Lett. 4(10), 740–742 (2007).
[Crossref]

Meng, J.

L. Bo, J. Meng, T. S. Chuan, and S. Ping, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Meng, Z.

Molony, A.

L. Zhang, K. Sugden, I. Bennion, and A. Molony, “Wide-stopband chirped fibre moiré grating transmission filters,” Electron. Lett. 31(6), 477–479 (1995).
[Crossref]

Nolte, S.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pan, S. L.

Paramonov, V. M.

V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, and V. B. Tsvetkov, “Single-polarization cladding-pumped Yb-doped fiber laser,” Laser Phys. Lett. 4(10), 740–742 (2007).
[Crossref]

Peng, W. J.

S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Ping, S.

L. Bo, J. Meng, T. S. Chuan, and S. Ping, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Quan, Z.

Shum, P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Smith, P. W. E.

L. R. Chen, D. J. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10(9), 1283–1285 (1998).
[Crossref]

Steel, M. J.

Stewart, G.

Sugden, K.

L. Zhang, K. Sugden, I. Bennion, and A. Molony, “Wide-stopband chirped fibre moiré grating transmission filters,” Electron. Lett. 31(6), 477–479 (1995).
[Crossref]

Tan, W. C.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Tan, Y. N.

Tang, M.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Thomas, J.

Tossavainen, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Tse, C. H.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Tsvetkov, V. B.

V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, and V. B. Tsvetkov, “Single-polarization cladding-pumped Yb-doped fiber laser,” Laser Phys. Lett. 4(10), 740–742 (2007).
[Crossref]

Tünnermann, A.

Wei, D. P.

Wei, Y.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Whitenett, G.

Williams, R. J.

Withford, M. J.

Wu, R. F.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Xu, S. H.

Yamashita, S.

Yang, Z. M.

Yao, J. P.

S. L. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
[Crossref] [PubMed]

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Yin, B.

B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
[Crossref]

Zhang, J.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Zhang, L.

L. Zhang, K. Sugden, I. Bennion, and A. Molony, “Wide-stopband chirped fibre moiré grating transmission filters,” Electron. Lett. 31(6), 477–479 (1995).
[Crossref]

Zhang, Q. Y.

Zhang, W. N.

Zhao, X. F.

Zhao, Y. C.

Zhou, J. L.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Electron. Lett. (2)

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

L. Zhang, K. Sugden, I. Bennion, and A. Molony, “Wide-stopband chirped fibre moiré grating transmission filters,” Electron. Lett. 31(6), 477–479 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (4)

L. R. Chen, D. J. F. Cooper, and P. W. E. Smith, “Transmission filters with multiple flattened passbands based on chirped moire gratings,” IEEE Photon. Technol. Lett. 10(9), 1283–1285 (1998).
[Crossref]

B. Yin, S. C. Feng, Y. L. Bai, Z. B. Liu, L. J. Liang, S. Liu, and S. S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26(12), 1227–1230 (2014).
[Crossref]

L. Bo, J. Meng, T. S. Chuan, and S. Ping, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal -mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

J. Lightwave Technol. (2)

Laser Phys. Lett. (1)

V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, and V. B. Tsvetkov, “Single-polarization cladding-pumped Yb-doped fiber laser,” Laser Phys. Lett. 4(10), 740–742 (2007).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Commun. (1)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The experimental configuration of the wavelength-tunable and-switchable dual-wavelength single polarization SLM EDF ring laser. (b) The typical simulation transmission spectrum of the PM-CMFBG filter. (c) The measured transmission spectrum of the PM-CMFBG filter.
Fig. 2
Fig. 2 The optical spectra of the wavelength-tunable and-switchable dual-wavelength laser: (a) the resolution of 0.01nm and (b) (c) the resolution of 0.16pm. (d) The measured output spectra of the proposed laser at a 3-min interval over 30-min period.
Fig. 3
Fig. 3 The optical spectra of the proposed laser: (a) with PM-CMFBG filter; (b) without PM-CMFBG filter. Self-homodyne RF beat spectra of the fiber laser: (c) with PM-CMFBG filter; (d) without PM-CMFBG filter.
Fig. 4
Fig. 4 (black line) Measured frequency spectra of the proposed laser with delay self-heterodyne method for each wavelength, and (red line) Lorentz function fitting.
Fig. 5
Fig. 5 Measured polarization parameters of the proposed laser for each wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n e f f + 2 δ n cos ( 2 π z Λ c ) cos ( 2 π z Λ s )
Δ Λ = Λ 1 Λ 2 = c D

Metrics