Abstract

Enabled by the ultrahigh-speed all-optical wavelength-swept mechanism and broadband optical amplification, amplified optical time-stretch optical coherence tomography (AOT-OCT) has recently been demonstrated as a practical alternative to achieve ultrafast A-scan rate of multi-MHz in OCT. With the aim of identifying the optimal scenarios for MHz operation in AOT-OCT, we here present a theoretical framework to evaluate its performance metric. In particular, the analysis discusses the unique features of AOT-OCT, such as its superior coherence length, and the relationship between the optical gain and the A-scan rate. More importantly, we evaluate the sensitivity of AOT-OCT in the MHz regime under the influence of the amplifier noise. Notably, the model shows that AOT-OCT is particularly promising when operated at the A-scan rate well beyond multi-MHz – not trivially achievable by any existing swept-source OCT platform. A sensitivity beyond 90 dB, close to the shot-noise limit, can be maintained in the range of 2 – 10 MHz with an optical net gain of ~10dB. Experimental measurement also shows excellent agreement with the theoretical prediction. While distributed fiber Raman amplification is mainly considered in this paper, the theoretical model is generally applicable to any type of amplification schemes. As a result, our analysis serves as a useful tool for further optimization of AOT-OCT system – as a practical alternative to enable MHz OCT operation.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch

Jingjiang Xu, Chi Zhang, Jianbing Xu, K. K. Y. Wong, and K. K. Tsia
Opt. Lett. 39(3) 622-625 (2014)

Optically amplified detection for biomedical sensing and imaging

Ata Mahjoubfar, Keisuke Goda, Gary Betts, and Bahram Jalali
J. Opt. Soc. Am. A 30(10) 2124-2132 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. H. C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
    [Crossref] [PubMed]
  3. L. An, P. Li, G. P. Lan, D. Malchow, and R. K. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
    [Crossref] [PubMed]
  4. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [Crossref] [PubMed]
  5. R. Wang, J. X. Yun, X. C. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt. 16(6), 066016 (2011).
    [Crossref] [PubMed]
  6. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett. 33(12), 1318–1320 (2008).
    [Crossref] [PubMed]
  7. D. H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
    [Crossref] [PubMed]
  8. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “> 400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
    [Crossref] [PubMed]
  9. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  10. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [Crossref] [PubMed]
  11. T. H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. S. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A. E. Cable, and J. G. Fujimoto, “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4(7), 1119–1132 (2013).
    [Crossref] [PubMed]
  12. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  13. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  14. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
    [Crossref] [PubMed]
  15. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).
    [Crossref] [PubMed]
  16. K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
    [Crossref]
  17. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20(18), 19612–19617 (2012).
    [Crossref] [PubMed]
  18. T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid Optical Frequency-Domain Reflectometry Based Upon Dispersion-Induced Time Stretching: Principle and Applications,” IEEE J. Sel. Top. Quantum Electron. 18(1), 148–165 (2012).
    [Crossref]
  19. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [Crossref] [PubMed]
  20. T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
    [Crossref] [PubMed]
  21. H. W. Chen, C. Lei, F. J. Xing, Z. L. Weng, M. H. Chen, S. G. Yang, and S. Z. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39(7), 2202–2205 (2014).
    [Crossref] [PubMed]
  22. J. J. Xu, C. Zhang, J. B. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
    [Crossref] [PubMed]
  23. Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
    [Crossref] [PubMed]
  24. S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
    [Crossref] [PubMed]
  25. X. M. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 mu m,” IEEE J. Sel. Top. Quantum Electron. 20, 5 (2014).
  26. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2007).
  27. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
  28. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
    [Crossref]
  29. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
    [Crossref] [PubMed]
  30. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
    [Crossref] [PubMed]
  31. Z. L. Hu, Y. S. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt. 46(35), 8499–8505 (2007).
    [Crossref] [PubMed]
  32. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  33. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [Crossref]
  34. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
    [Crossref]
  35. K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95(25), 251101 (2009).
    [Crossref]
  36. A. Mahjoubfar, K. Goda, G. Betts, and B. Jalali, “Optically amplified detection for biomedical sensing and imaging,” J. Opt. Soc. Am. A 30(10), 2124–2132 (2013).
    [Crossref] [PubMed]
  37. C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, 2005).
  38. H. Masuda, S. Kawai, and K. I. Suzuki, “Optical SNR enhanced amplification in long-distance recirculating-loop WDM transmission experiment using 1580 nm band hybrid amplifier,” Electron. Lett. 35(5), 411–412 (1999).
    [Crossref]
  39. H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11(6), 647–649 (1999).
    [Crossref]
  40. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
    [Crossref]
  41. American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).

2014 (5)

X. M. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 mu m,” IEEE J. Sel. Top. Quantum Electron. 20, 5 (2014).

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

J. J. Xu, C. Zhang, J. B. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref] [PubMed]

S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
[Crossref] [PubMed]

H. W. Chen, C. Lei, F. J. Xing, Z. L. Weng, M. H. Chen, S. G. Yang, and S. Z. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39(7), 2202–2205 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (4)

2011 (1)

R. Wang, J. X. Yun, X. C. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt. 16(6), 066016 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (4)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95(25), 251101 (2009).
[Crossref]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
[Crossref] [PubMed]

2008 (4)

2007 (2)

2006 (2)

2003 (1)

2002 (1)

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[Crossref]

2000 (1)

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[Crossref]

1999 (2)

H. Masuda, S. Kawai, and K. I. Suzuki, “Optical SNR enhanced amplification in long-distance recirculating-loop WDM transmission experiment using 1580 nm band hybrid amplifier,” Electron. Lett. 35(5), 411–412 (1999).
[Crossref]

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11(6), 647–649 (1999).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Aguirre, A. D.

Ahn, T. J.

T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid Optical Frequency-Domain Reflectometry Based Upon Dispersion-Induced Time Stretching: Principle and Applications,” IEEE J. Sel. Top. Quantum Electron. 18(1), 148–165 (2012).
[Crossref]

Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
[Crossref] [PubMed]

An, L.

Azana, J.

T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid Optical Frequency-Domain Reflectometry Based Upon Dispersion-Induced Time Stretching: Principle and Applications,” IEEE J. Sel. Top. Quantum Electron. 18(1), 148–165 (2012).
[Crossref]

Azaña, J.

Barry, S.

Baumann, B.

Betts, G.

Biedermann, B. R.

Bouma, B. E.

Cable, A.

Cable, A. E.

Capewell, D.

Chan, A. C. S.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Chan, G. C. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, H. W.

Chen, M. H.

Chen, Y. L.

Chernikov, S. V.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[Crossref]

Choi, D.

Choi, D. H.

Choma, M. A.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Connolly, J. L.

Duker, J. S.

Eigenwillig, C. M.

Fard, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fu, G.

Fujimoto, J. G.

H. C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
[Crossref] [PubMed]

T. H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. S. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A. E. Cable, and J. G. Fujimoto, “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4(7), 1119–1132 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Furukawa, H.

Gao, B. Z.

R. Wang, J. X. Yun, X. C. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt. 16(6), 066016 (2011).
[Crossref] [PubMed]

Goda, K.

A. Mahjoubfar, K. Goda, G. Betts, and B. Jalali, “Optically amplified detection for biomedical sensing and imaging,” J. Opt. Soc. Am. A 30(10), 2124–2132 (2013).
[Crossref] [PubMed]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20(18), 19612–19617 (2012).
[Crossref] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95(25), 251101 (2009).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
[Crossref]

Goodwin, R.

R. Wang, J. X. Yun, X. C. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt. 16(6), 066016 (2011).
[Crossref] [PubMed]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grulkowski, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heim, P. J. S.

Hiro-Oka, H.

Ho, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Hornegger, J.

Hu, Z. L.

Huang, D.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Islam, M. N.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[Crossref]

Izatt, J. A.

Jalali, B.

A. Mahjoubfar, K. Goda, G. Betts, and B. Jalali, “Optically amplified detection for biomedical sensing and imaging,” J. Opt. Soc. Am. A 30(10), 2124–2132 (2013).
[Crossref] [PubMed]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20(18), 19612–19617 (2012).
[Crossref] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95(25), 251101 (2009).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Jayaraman, V.

Jiang, J.

Kampik, A.

Kawai, S.

H. Masuda, S. Kawai, and K. I. Suzuki, “Optical SNR enhanced amplification in long-distance recirculating-loop WDM transmission experiment using 1580 nm band hybrid amplifier,” Electron. Lett. 35(5), 411–412 (1999).
[Crossref]

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11(6), 647–649 (1999).
[Crossref]

Kieffer, J. C.

Kim, D. Y.

Klein, T.

Kraus, M. F.

Lam, E. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Lan, G. P.

Lau, A. K. S.

X. M. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 mu m,” IEEE J. Sel. Top. Quantum Electron. 20, 5 (2014).

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Lee, H. C.

Lei, C.

Lewis, S. A. E.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[Crossref]

Li, P.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J. J.

Lu, C. D.

Mahjoubfar, A.

A. Mahjoubfar, K. Goda, G. Betts, and B. Jalali, “Optically amplified detection for biomedical sensing and imaging,” J. Opt. Soc. Am. A 30(10), 2124–2132 (2013).
[Crossref] [PubMed]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95(25), 251101 (2009).
[Crossref]

Malchow, D.

Malik, O.

Markwald, R. R.

R. Wang, J. X. Yun, X. C. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt. 16(6), 066016 (2011).
[Crossref] [PubMed]

Mashimo, H.

Masuda, H.

H. Masuda, S. Kawai, and K. I. Suzuki, “Optical SNR enhanced amplification in long-distance recirculating-loop WDM transmission experiment using 1580 nm band hybrid amplifier,” Electron. Lett. 35(5), 411–412 (1999).
[Crossref]

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11(6), 647–649 (1999).
[Crossref]

Moon, S.

Nakanishi, M.

Neubauer, A.

Oh, W. Y.

Ohbayashi, K.

Pan, Y. S.

Park, Y.

T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid Optical Frequency-Domain Reflectometry Based Upon Dispersion-Induced Time Stretching: Principle and Applications,” IEEE J. Sel. Top. Quantum Electron. 18(1), 148–165 (2012).
[Crossref]

Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
[Crossref] [PubMed]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Quach, A.

Reznicek, L.

Robles, J. D. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Rollins, A. M.

Sarunic, M. V.

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sheikine, Y.

Shimizu, K.

Shishkov, M.

Shum, H. C.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Siddiqui, M.

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
[Crossref]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Suzuki, K. I.

H. Masuda, S. Kawai, and K. I. Suzuki, “Optical SNR enhanced amplification in long-distance recirculating-loop WDM transmission experiment using 1580 nm band hybrid amplifier,” Electron. Lett. 35(5), 411–412 (1999).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tang, A. H. L.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Tang, M. Y. H.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Tao, Y. K.

Taylor, J. R.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[Crossref]

Tearney, G. J.

Tozburun, S.

Tsai, T. H.

Tsia, K. K.

J. J. Xu, C. Zhang, J. B. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

Tsia, K. K. M.

X. M. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 mu m,” IEEE J. Sel. Top. Quantum Electron. 20, 5 (2014).

Vakoc, B. J.

Wang, R.

R. Wang, J. X. Yun, X. C. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt. 16(6), 066016 (2011).
[Crossref] [PubMed]

Wang, R. K. K.

Wei, X. M.

X. M. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 mu m,” IEEE J. Sel. Top. Quantum Electron. 20, 5 (2014).

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Weng, Z. L.

Wieser, W.

Wojtkowski, M.

Wong, K. K. Y.

X. M. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 mu m,” IEEE J. Sel. Top. Quantum Electron. 20, 5 (2014).

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

J. J. Xu, C. Zhang, J. B. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref] [PubMed]

Wong, T. T. W.

X. M. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 mu m,” IEEE J. Sel. Top. Quantum Electron. 20, 5 (2014).

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Xie, S. Z.

Xing, F. J.

Xu, J. B.

Xu, J. J.

Yang, C. H.

Yang, S. G.

Yoshimura, R.

Yuan, X. C.

R. Wang, J. X. Yun, X. C. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt. 16(6), 066016 (2011).
[Crossref] [PubMed]

Yun, J. X.

R. Wang, J. X. Yun, X. C. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt. 16(6), 066016 (2011).
[Crossref] [PubMed]

Zhang, C.

X. M. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 mu m,” IEEE J. Sel. Top. Quantum Electron. 20, 5 (2014).

J. J. Xu, C. Zhang, J. B. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref] [PubMed]

Zhou, C.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
[Crossref]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95(25), 251101 (2009).
[Crossref]

Biomed. Opt. Express (6)

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

D. H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
[Crossref] [PubMed]

L. An, P. Li, G. P. Lan, D. Malchow, and R. K. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[Crossref] [PubMed]

T. H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. S. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A. E. Cable, and J. G. Fujimoto, “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express 4(7), 1119–1132 (2013).
[Crossref] [PubMed]

H. C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
[Crossref] [PubMed]

Electron. Lett. (1)

H. Masuda, S. Kawai, and K. I. Suzuki, “Optical SNR enhanced amplification in long-distance recirculating-loop WDM transmission experiment using 1580 nm band hybrid amplifier,” Electron. Lett. 35(5), 411–412 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

X. M. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 mu m,” IEEE J. Sel. Top. Quantum Electron. 20, 5 (2014).

T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid Optical Frequency-Domain Reflectometry Based Upon Dispersion-Induced Time Stretching: Principle and Applications,” IEEE J. Sel. Top. Quantum Electron. 18(1), 148–165 (2012).
[Crossref]

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11(6), 647–649 (1999).
[Crossref]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12(5), 528–530 (2000).
[Crossref]

J. Biomed. Opt. (1)

R. Wang, J. X. Yun, X. C. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt. 16(6), 066016 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Nature (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Opt. Express (11)

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).
[Crossref] [PubMed]

Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
[Crossref] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
[Crossref] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20(18), 19612–19617 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

Sci. Rep. (1)

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. M. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (4)

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2007).

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, 2005).

American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of a generic AOT-OCT system.
Fig. 2
Fig. 2 Coherence length and spectral resolution as a function of A-scan rate in AOT-OCT. The center wavelength is 1620 nm and the optical bandwidth is 80 nm. The Dmax is determined by 0.8 / ( f A Δ λ ) in the unit of ns/nm.
Fig. 3
Fig. 3 AOT-OCT Sensitivity (A-scan rate of 5MHz) as a function of the MZI coupling ratio. The input power is 0.5mW. The electrical bandwidth of the detector is 5 GHz with a responsivity of ρ = 1 A / W and a noise-equivalent power of N E P = 2 p A / H z . The delay line transmission T d = 0.8 , the circulator transmission T c = 0.85 ,and the number of sampling points M = 2000 .
Fig. 4
Fig. 4 AOT-OCT sensitivity as a function of input signal power. We consider the AOT-OCT system operating at 5 MHz A-scan rate using a photodetector with a bandwidth of 5 GHz. In this optical amplification scheme based on FRA, we incorporate both the forward and backward pumps with the equal powers of 240 mW such that the net optical gain of G = 10 dB is achieved in a 20-km long dispersive fiber (with Dc = −100 ps/nm/km, see Table 1).
Fig. 5
Fig. 5 (a) Required total pump powers for FRA and (b) the corresponding AOT-OCT sensitivity as a function of net optical gain and the A-scan rate. The input signal power is Pin = 0.5 mW. Other key parameters adopted in this analysis are specified in Table 1. In (b), the horizontal dashed line indicates the AOT-OCT sensitivity as a function of A-scan rate at a fixed net (FRA) gain of 10 dB (further elaborated in Fig. 6). On the other hand, the vertical dashed line indicates the AOT-OCT sensitivity as a function of net (FRA) gain at a fixed A-scan rate of 5 MHz (further elaborated in Fig. 7).
Fig. 6
Fig. 6 AOT-OCT sensitivity (blue) as a function the A-scan rate at a fixed net (FRA) gain of 10 dB. It is also compared to the case of shot-noise limited AOT-OCT operation (red) as well as the case of AOT-OCT without optical amplification (green). Other key parameters adopted in this analysis are specified in Table 1.
Fig. 7
Fig. 7 (a) Sensitivity and (b) the corresponding noise components at the photodetector as a function the net FRA gain at a fixed A-scan rate of 5 MHz. Other key parameters adopted in this analysis are specified in Table 1.
Fig. 8
Fig. 8 (a) Measured and theoretical sensitivity in AOT-OCT system based on FRA. The solid red line is obtained by the theoretical model whereas the solid black circles are the calculated sensitivity based on experimental measurement in AOT-OCT system. The error bars represent a standard-deviation of the measured sensitivity in 20 repeated measurements. (b-d) AOT-OCT cross-sectional images of kiwifruit taken with a net FRA gain of 7dB, 15dB and 19 dB, respectively.

Tables (1)

Tables Icon

Table 1 Parameter Values for Sensitivity Evaluation of AOT-OCT Based on FRA

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

δ λ S P A = λ 2 D c ,
l c = 2 ln 2 π λ 2 δ λ S P A .
i d = ρ [ T r G P i n + T s G P i n + 2 G P i n T r T s cos ( 2 k Δ z ) ] ,
i s = 2 ρ G P i n T r T s cos ( 2 k Δ z ) .
i s ˜ 2 = ρ 2 T r T s ( G P i n ) 2 M 2 ,
σ n o i s e 2 = T t 2 σ a m 2 + σ s h 2 + σ r e 2 ,
S N R A O T O C T = i s ˜ 2 / σ n o i s e 2 ˜ = ρ 2 T r T s ( G P i n ) 2 M T t 2 σ a m 2 + 2 e ρ T t G P i n B e + σ r e 2 .
S A O T O C T = ρ 2 T r T s , 0 ( G P i n ) 2 M T r 2 σ a m 2 + 2 e ρ T r G P i n B e + σ r e 2 ,
G ( z ) = exp [ g R 0 z I p ( z ) d z α s z ] ,
I f ( 0 ) = P f ( 0 ) π ( d p / 2 ) 2 , I b ( L ) = P b ( L ) π ( d p / 2 ) 2 ,
σ D R B 2 = 2 f D R B [ ρ G ( L ) P i n ] 2 ,
σ R I N 2 = [ ρ G ( L ) P i n ] 0 B e R I N s ( f ) d f ,
σ s A S E 2 = 4 ρ 2 G ( L ) P i n S A S E B e .
σ A S E A S E 2 = 4 ρ 2 S A S E 2 B e ( B o B e 2 ) ,
σ a m 2 = σ D R B 2 + σ R I N 2 + σ s A S E 2 + σ A S E A S E 2 .

Metrics