Abstract

We demonstrate silicon nitride mode-division multiplexing (MDM) and wavelength-division multiplexing (WDM) using asymmetrical directional couplers and microring resonators. Our experiments reveal three-mode multiplexing and demultiplexing. We demonstrate 30Gb/s open eye diagrams with an extinction ratio of ~9 dB for each of the three modes. We observe the worst-case modal crosstalk of ~-10 dB. Our analysis of the measured transmission spectra suggests three contributions to the observed crosstalks, with the dominant cause being a compromised input-coupling at the directional couplers in the multiplexer.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel

Jeffrey B. Driscoll, Christine P. Chen, Richard R. Grote, Brian Souhan, Jerry I. Dadap, Aaron Stein, Ming Lu, Keren Bergman, and Richard M. Osgood
Opt. Express 22(15) 18543-18555 (2014)

Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission

Nobutomo Hanzawa, Kuimasa Saitoh, Taiji Sakamoto, Takashi Matsui, Kyozo Tsujikawa, Masanori Koshiba, and Fumihiko Yamamoto
Opt. Express 21(22) 25752-25760 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  2. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, A. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” in IEEE Electron Devices Meeting (IEEE, 2012), pp. 33.8.1–33.8.3.
    [Crossref]
  3. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt. 21(11), 1950–1955 (1982).
    [Crossref] [PubMed]
  4. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
    [Crossref]
  5. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
    [Crossref] [PubMed]
  6. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  7. D. Dai, J. Wang, and Y. C. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  8. C. P. Chen, J. Driscoll, B. Souhan, R. Grote, X. Zhu, R. M. Osgood, and K. Bergman, “Experimental demonstration of spatial scaling for high-throughput transmission through a Si mode-division-multiplexing waveguide,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2014), paper IM2A.3.
  9. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
    [Crossref] [PubMed]
  10. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  11. D. Dai, “Silicon-based multi-channel mode (de)multiplexer for on-chip optical interconnects,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2014), paper IM2A.2.
  12. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]

2014 (1)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2002 (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

1982 (1)

Berdagué, S.

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, C. P.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Da Ros, F.

Dadap, J. I.

Dai, D.

Ding, Y.

Driscoll, J. B.

Facq, P.

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Grote, R. R.

Huang, B.

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Kawaguchi, Y.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Li, Z.

Lipson, M.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Lu, M.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Osgood, R. M.

Ou, H.

Peucheret, C.

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Shi, Y. C.

Souhan, B.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Wang, J.

Xiao, X.

Xing, J.

Xu, J.

Yu, J.

Yu, Y.

Appl. Opt. (1)

Electron. Lett. (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Nat. Commun. (2)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (3)

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, A. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” in IEEE Electron Devices Meeting (IEEE, 2012), pp. 33.8.1–33.8.3.
[Crossref]

D. Dai, “Silicon-based multi-channel mode (de)multiplexer for on-chip optical interconnects,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2014), paper IM2A.2.

C. P. Chen, J. Driscoll, B. Souhan, R. Grote, X. Zhu, R. M. Osgood, and K. Bergman, “Experimental demonstration of spatial scaling for high-throughput transmission through a Si mode-division-multiplexing waveguide,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2014), paper IM2A.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Working principle of the MDM-WDM transmission scheme. (b) and (c) Working principles of the three-mode MUX and DeMUX. (b) MUX based on directional couplers for the TE0 mode in the input waveguide coupling to the TE0, TE1, and TE2 modes in the bus waveguide. (c) DeMUX based on microring resonators for the TE0, TE1, and TE2 modes in the bus waveguide coupling to the TE0 mode in the microring.
Fig. 2
Fig. 2 Schematics of a three-mode MDM-WDM circuit. (a) MUX based on asymmetrical directional couplers, and (b) DeMUX based on microring resonators. Inset: Cross-sectional schematic of the SiN waveguide.
Fig. 3
Fig. 3 (a)–(c) BPM-simulated mode intensity profiles of the (a) TE0, (b) TE1 and (c) TE2 modes in different bus waveguide segments. (d) – (f) BPM-simulated mode intensity profiles of the three directional couplers, including (d) a symmetrical directional coupling for the TE0 mode, (e) an asymmetrical directional coupling from the TE0 mode to the TE1 mode, and (f) an asymmetrical directional coupling from the TE0 mode to the TE2 mode.
Fig. 4
Fig. 4 (a) Calculated neff values of the TE modes of 400nm-thick SiN waveguides. Black squares: TE0, red circles: TE1, blue triangles: TE2, green triangles: TE3 and purple triangles: TE4. (b) Calculated field coupling coefficients of the three directional couplers in the MUX. Blue triangles: TE0-to-TE2, red squares: TE0-to-TE1, and black crossings: TE0-to-TE0. (c) Calculated field coupling coefficients of the bus-to-microring coupling in the DeMUX. (d) Calculated field cross-coupling coefficients of the undesired modes in bus-to-microring coupling. Black circles: the TE0 mode cross-couples from a bus waveguide with wb = 2.25 μm, red stars: the TE1 mode cross-couples from a bus waveguide with wb = 3.5 μm, and purple crossings: the TE0 mode cross-couples from a bus waveguide with wb = 3.5 μm.
Fig. 5
Fig. 5 (a) SEM image for the fabricated SiN MDM-WDM circuit. (b) - (d) SEM images of the coupling regions between the input waveguides and the bus waveguides with a designed bus waveguide width of (b) 1 μm, (c) 2.25 μm, and (d) 3.5 μm.
Fig. 6
Fig. 6 Near-field images of the MUX bus waveguide output facet with the light input-coupled from ports (a) I1, (b) I2, and (c) I3.
Fig. 7
Fig. 7 (a)-(c) Measured and fitted transmission spectra from the bus output and outputs of (a) O1, (b) O2, and (c) O3 with input light from I1, I2 and I3. (d) - (f) Measured eye diagrams of the three transmission channels at 30 Gb/s.

Tables (4)

Tables Icon

Table 1 Designed field coupling coefficients at each coupling region

Tables Icon

Table 2 Measured transmissions and extracted field coupling coefficients of the MUX at 1550 nm

Tables Icon

Table 3 Transmissions (dB) of the MDM-WDM circuit

Tables Icon

Table 4 Fitted field coupling coefficients of the DeMUX

Metrics