Abstract

The extremely small size of plasmonic antennas has made it difficult to integrate them with nanoscale detectors that require electrical leads, as the leads tend to degrade the resonant properties of the antenna. We present a design for integrating a plasmonic antenna with a nanoscale superconducting transition-edge sensor (TES) with electrical leads. Numerical simulations demonstrate high-efficiency coupling of 1550 nm incident photons into the sub-wavelength TES. Although we have chosen to design around a TES, this approach is broadly applicable to any dissipative nanoscale device that requires an electrical connection.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superconducting nanowire single-photon detectors integrated with optical nano-antennae

Xiaolong Hu, Eric A. Dauler, Richard J. Molnar, and Karl K. Berggren
Opt. Express 19(1) 17-31 (2011)

Utilizing niobium plasmonic perfect absorbers for tunable near- and mid-IR photodetection

Ahmed Farag, Monika Ubl, Annika Konzelmann, Mario Hentschel, and Harald Giessen
Opt. Express 27(18) 25012-25021 (2019)

Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths

Lixing You, Junjie Wu, Yingxin Xu, Xintong Hou, Wei Fang, Hao Li, Weijun Zhang, Lu Zhang, Xiaoyu Liu, Limin Tong, Zhen Wang, and Xiaoming Xie
Opt. Express 25(25) 31221-31229 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
    [Crossref]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [Crossref]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
    [Crossref]
  4. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
    [Crossref] [PubMed]
  5. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref] [PubMed]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [Crossref]
  7. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [Crossref] [PubMed]
  8. E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
    [Crossref] [PubMed]
  9. A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antennas Propag. 61, 1508–1517 (2013).
    [Crossref]
  10. W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113, 14672–14675 (2009).
    [Crossref]
  11. L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144, 151–158 (2010).
    [Crossref]
  12. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref] [PubMed]
  13. R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
    [Crossref] [PubMed]
  14. P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13, 392–396 (2013).
    [Crossref] [PubMed]
  15. K. Irwin and G. Hilton, “Transition-edge sensors,” in Cryogenic particle detection, of Topics in Applied Physics, C. Enss, ed. (SpringerBerlin Heidelberg, 2005), vol. 99, pp. 63–150.
  16. A. Lita, A. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
    [Crossref] [PubMed]
  17. B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
    [Crossref]
  18. D. E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer,” Appl. Phys. Lett. 62, 2119–2121 (1993).
    [Crossref]
  19. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
    [Crossref]
  20. D. F. Santavicca, F. W. Carter, and D. E. Prober, “Proposal for a ghz count rate near-ir single-photon detector based on a nanoscale superconducting transition edge sensor,” Proc. SPIE 8033, 80330W (2011).
    [Crossref]
  21. C. Brewitt-Taylor, D. Gunton, and H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
    [Crossref]

2013 (2)

A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antennas Propag. 61, 1508–1517 (2013).
[Crossref]

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13, 392–396 (2013).
[Crossref] [PubMed]

2012 (1)

B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
[Crossref]

2011 (4)

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[Crossref] [PubMed]

D. F. Santavicca, F. W. Carter, and D. E. Prober, “Proposal for a ghz count rate near-ir single-photon detector based on a nanoscale superconducting transition edge sensor,” Proc. SPIE 8033, 80330W (2011).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

2010 (4)

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144, 151–158 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref] [PubMed]

2009 (2)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113, 14672–14675 (2009).
[Crossref]

2008 (2)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

A. Lita, A. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[Crossref] [PubMed]

2007 (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

1994 (1)

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[Crossref]

1993 (1)

D. E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer,” Appl. Phys. Lett. 62, 2119–2121 (1993).
[Crossref]

1992 (1)

G. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
[Crossref]

1981 (1)

C. Brewitt-Taylor, D. Gunton, and H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[Crossref]

Alu, A.

A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antennas Propag. 61, 1508–1517 (2013).
[Crossref]

Anderson, L. J. E.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144, 151–158 (2010).
[Crossref]

Barnard, E. S.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Brewitt-Taylor, C.

C. Brewitt-Taylor, D. Gunton, and H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[Crossref]

Brongersma, M. L.

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13, 392–396 (2013).
[Crossref] [PubMed]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[Crossref] [PubMed]

Cao, L.

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13, 392–396 (2013).
[Crossref] [PubMed]

Carter, F. W.

D. F. Santavicca, F. W. Carter, and D. E. Prober, “Proposal for a ghz count rate near-ir single-photon detector based on a nanoscale superconducting transition edge sensor,” Proc. SPIE 8033, 80330W (2011).
[Crossref]

Coenen, T.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[Crossref] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Dorenbos, S. N.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref] [PubMed]

Engheta, N.

A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antennas Propag. 61, 1508–1517 (2013).
[Crossref]

Fan, P.

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13, 392–396 (2013).
[Crossref] [PubMed]

Fischer, H.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113, 14672–14675 (2009).
[Crossref]

Gershenson, M. E.

B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
[Crossref]

Gunton, D.

C. Brewitt-Taylor, D. Gunton, and H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[Crossref]

Hafner, J. H.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144, 151–158 (2010).
[Crossref]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Hansen, E.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144, 151–158 (2010).
[Crossref]

Heeres, R. W.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref] [PubMed]

Hilton, G.

K. Irwin and G. Hilton, “Transition-edge sensors,” in Cryogenic particle detection, of Topics in Applied Physics, C. Enss, ed. (SpringerBerlin Heidelberg, 2005), vol. 99, pp. 63–150.

Huang, K. C. Y.

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13, 392–396 (2013).
[Crossref] [PubMed]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

Irwin, K.

K. Irwin and G. Hilton, “Transition-edge sensors,” in Cryogenic particle detection, of Topics in Applied Physics, C. Enss, ed. (SpringerBerlin Heidelberg, 2005), vol. 99, pp. 63–150.

Karasik, B. S.

B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Koene, B.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref] [PubMed]

Kouwenhoven, L. P.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref] [PubMed]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Lapotko, D. O.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144, 151–158 (2010).
[Crossref]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Lita, A.

Lukianova-Hleb, E. Y.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144, 151–158 (2010).
[Crossref]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113, 14672–14675 (2009).
[Crossref]

Miller, A.

Miller, D. a. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Nam, S.

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Olaya, D.

B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
[Crossref]

Pereverzev, S. V.

B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
[Crossref]

Polman, A.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[Crossref] [PubMed]

Prober, D. E.

B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
[Crossref]

D. F. Santavicca, F. W. Carter, and D. E. Prober, “Proposal for a ghz count rate near-ir single-photon detector based on a nanoscale superconducting transition edge sensor,” Proc. SPIE 8033, 80330W (2011).
[Crossref]

D. E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer,” Appl. Phys. Lett. 62, 2119–2121 (1993).
[Crossref]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Rebeiz, G.

G. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
[Crossref]

Rees, H.

C. Brewitt-Taylor, D. Gunton, and H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[Crossref]

Richards, P. L.

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[Crossref]

Santavicca, D. F.

B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
[Crossref]

D. F. Santavicca, F. W. Carter, and D. E. Prober, “Proposal for a ghz count rate near-ir single-photon detector based on a nanoscale superconducting transition edge sensor,” Proc. SPIE 8033, 80330W (2011).
[Crossref]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Schmid, T.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113, 14672–14675 (2009).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Soibel, A.

B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
[Crossref]

Solomon, G. S.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref] [PubMed]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Vesseur, E. J. R.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Zenobi, R.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113, 14672–14675 (2009).
[Crossref]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113, 14672–14675 (2009).
[Crossref]

Zwiller, V.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Appl. Phys. Lett. (2)

B. S. Karasik, S. V. Pereverzev, A. Soibel, D. F. Santavicca, D. E. Prober, D. Olaya, and M. E. Gershenson, “Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).
[Crossref]

D. E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer,” Appl. Phys. Lett. 62, 2119–2121 (1993).
[Crossref]

Electron. Lett. (1)

C. Brewitt-Taylor, D. Gunton, and H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[Crossref]

IEEE Trans. Antennas Propag. (1)

A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antennas Propag. 61, 1508–1517 (2013).
[Crossref]

J. Appl. Phys. (1)

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[Crossref]

J. Controlled Release (1)

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144, 151–158 (2010).
[Crossref]

J. Phys. Chem. C (1)

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-enhanced raman spectroscopy using nanofabricated plasmonic dipole antennas,” J. Phys. Chem. C 113, 14672–14675 (2009).
[Crossref]

Nano Lett. (4)

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[Crossref] [PubMed]

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13, 392–396 (2013).
[Crossref] [PubMed]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. a. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

Proc. IEEE (1)

G. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80, 1748–1770 (1992).
[Crossref]

Proc. SPIE (1)

D. F. Santavicca, F. W. Carter, and D. E. Prober, “Proposal for a ghz count rate near-ir single-photon detector based on a nanoscale superconducting transition edge sensor,” Proc. SPIE 8033, 80330W (2011).
[Crossref]

Science (2)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Other (1)

K. Irwin and G. Hilton, “Transition-edge sensors,” in Cryogenic particle detection, of Topics in Applied Physics, C. Enss, ed. (SpringerBerlin Heidelberg, 2005), vol. 99, pp. 63–150.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1:
Fig. 1: Design for a TES coupled to a plasmonic resonator for 1550 nm photons. The total length of the resonator is twice the plasmon wavelength. The dashed lines indicate the Nb/Al overlap region, which is 50 nm long. The Nb element is 325 nm long, the Al elements are each 680 nm long.
Fig. 2:
Fig. 2: Calculation of λp from Eq. (3) for cylindrical Nb nano rods with R = 20 nm and different lengths (solid line) has been fit to the results of CST simulations on the same geometry (open circles) with one free parameter (X = 198 nm). Inset depicts simulation geometry. Dashed lines indicate λp at 1550 nm.
Fig. 3:
Fig. 3: Wavelength-dependent complex index of refraction for 16 nm thick Nb film.
Fig. 4:
Fig. 4: Power absorbed in Nb detector (normalized to 1) as a function of both Al and Nb length, for λ = 1550 nm. The superimposed black line is a best fit to Eq. 4. The small cross indicates the initial parameters from the calculation of λp for Nb and Al cylinders with radii of 20 nm.
Fig. 5:
Fig. 5: Red: power absorbed in Nb element due to incident light polarized along the axis of the detector (x) normalized by power absorbed due to incident light polarized perpendicular to the detector axis (y). Blue: power absorbed in Nb element with aluminum antenna/leads normalized by power absorbed without any aluminum at all. Incident wavelength is free-space wavelength. See Fig. 1 for device design.
Fig. 6:
Fig. 6: (a) Electric field strength at a height of 8 nm above the substrate (half the Nb height) superimposed on detector design (see Fig. 1) during illumination by 1550nm plane wave with field strength of 1 V/m. Note the strong field concentration at the detector, and the two-wavelength resonance (half a wavelength in the Nb, and three-halves in the Al). Also note the shorter plasmon wavelength in the Nb vs. the Al. (b) Z-component of field in same plane showing an unambiguous two-wavelength resonance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε ( λ ) κ 1 R J 1 ( κ 1 R ) J 0 ( κ 1 R ) ε s κ 2 R H 1 ( 1 ) ( κ 2 R ) H 0 ( 1 ) ( κ 2 R ) = 0
κ 1 = k 0 ε ( λ ) ( γ k 0 ) 2 κ 2 = k s ε s ( γ k 0 ) 2
λ p = 2 π / Re [ γ ] X
l Nb λ p Nb + l Al λ p Al = 2

Metrics