Abstract

We report a compact, stable, gain-switched-diode-seeded master oscillator power amplifier (MOPA), employing direct amplification via conventional Yb3+-doped fibers, to generate picosecond pulses with energy of 17.7 μJ and 97-W average output power (excluding amplified spontaneous emission) at 5.47-MHz repetition frequency in a diffraction-limited and single-polarization beam. A maximum peak power of 197 kW is demonstrated. Such a high-energy, high-power, MHz, picosecond MOPA is of great interest for high-throughput material processing. With 13.8-μJ pulse energy confined in the 0.87-nm 3-dB spectral bandwidth, this MOPA is also a promising source for nonlinear frequency conversion to generate high-energy pulses in other spectral regions. We have explored the pulse energy scaling until the stimulated Raman Scattering (SRS) becomes significant (i.e. spectral peak intensity exceeds 1% of that of the signal).

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-energy, near- and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier

Lin Xu, Ho-Yin Chan, Shaif-ul Alam, David J. Richardson, and David P. Shepherd
Opt. Express 23(10) 12613-12618 (2015)

High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system

Jiang Liu, Qian Wang, and Pu Wang
Opt. Express 20(20) 22442-22447 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Pervolaraki, P. Komninou, J. Kioseoglou, A. Othonos, and J. Giapintzakis, “Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization,” Appl. Surf. Sci. 278, 101–105 (2013).
    [Crossref]
  2. J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
    [Crossref]
  3. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
    [Crossref] [PubMed]
  4. F. Kienle, P. Siong Teh, S.-U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35(21), 3580–3582 (2010).
    [Crossref] [PubMed]
  5. K. Kowalewski, J. Zembek, V. Envid, and D. C. Brown, “201 W picosecond green laser using a mode-locked fiber laser driven cryogenic Yb:YAG amplifier system,” Opt. Lett. 37(22), 4633–4635 (2012).
    [Crossref] [PubMed]
  6. Z. Zhao, B. M. Dunham, and F. W. Wise, “Generation of 150 W average and 1 MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier,” J. Opt. Soc. Am. B 31(1), 33–37 (2014).
    [Crossref]
  7. P. S. Teh, R. J. Lewis, S. U. Alam, and D. J. Richardson, “200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA,” Opt. Express 21(22), 25883–25889 (2013).
    [Crossref] [PubMed]
  8. P. Elahi, S. Yılmaz, Y. B. Eldeniz, and F. Ö. Ilday, “Generation of picosecond pulses directly from a 100 W, burst-mode, doping-managed Yb-doped fiber amplifier,” Opt. Lett. 39(2), 236–239 (2014).
    [Crossref] [PubMed]
  9. V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express 14(25), 12302–12309 (2006).
    [Crossref] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

2014 (2)

2013 (2)

M. Pervolaraki, P. Komninou, J. Kioseoglou, A. Othonos, and J. Giapintzakis, “Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization,” Appl. Surf. Sci. 278, 101–105 (2013).
[Crossref]

P. S. Teh, R. J. Lewis, S. U. Alam, and D. J. Richardson, “200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA,” Opt. Express 21(22), 25883–25889 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (2)

2006 (1)

2004 (1)

J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
[Crossref]

Ahmed, M. A.

Alam, S. U.

Alam, S.-U.

Brown, D. C.

Duering, M. W.

Dunham, B. M.

Ebner, R.

J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
[Crossref]

Elahi, P.

Eldeniz, Y. B.

Envid, V.

Fian, A.

J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
[Crossref]

Gawith, C. B. E.

Giapintzakis, J.

M. Pervolaraki, P. Komninou, J. Kioseoglou, A. Othonos, and J. Giapintzakis, “Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization,” Appl. Surf. Sci. 278, 101–105 (2013).
[Crossref]

Graf, T.

Hanna, D. C.

Ilday, F. Ö.

Jakopic, G.

J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
[Crossref]

Kienle, F.

Kioseoglou, J.

M. Pervolaraki, P. Komninou, J. Kioseoglou, A. Othonos, and J. Giapintzakis, “Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization,” Appl. Surf. Sci. 278, 101–105 (2013).
[Crossref]

Kolev, V. Z.

Komninou, P.

M. Pervolaraki, P. Komninou, J. Kioseoglou, A. Othonos, and J. Giapintzakis, “Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization,” Appl. Surf. Sci. 278, 101–105 (2013).
[Crossref]

Kowalewski, K.

Kraus, M.

Lackner, J. M.

J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
[Crossref]

Leising, G.

J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
[Crossref]

Lewis, R. J.

Luther-Davies, B.

Michalowski, A.

Othonos, A.

M. Pervolaraki, P. Komninou, J. Kioseoglou, A. Othonos, and J. Giapintzakis, “Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization,” Appl. Surf. Sci. 278, 101–105 (2013).
[Crossref]

Pervolaraki, M.

M. Pervolaraki, P. Komninou, J. Kioseoglou, A. Othonos, and J. Giapintzakis, “Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization,” Appl. Surf. Sci. 278, 101–105 (2013).
[Crossref]

Richardson, D. J.

Rode, A. V.

Schöberl, T.

J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
[Crossref]

Shepherd, D. P.

Siong Teh, P.

Teh, P. S.

Voss, A.

Waldhauser, W.

J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
[Crossref]

Weber, R.

Wise, F. W.

Yilmaz, S.

Zembek, J.

Zhao, Z.

Appl. Surf. Sci. (1)

M. Pervolaraki, P. Komninou, J. Kioseoglou, A. Othonos, and J. Giapintzakis, “Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization,” Appl. Surf. Sci. 278, 101–105 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (3)

Surf. Coat. Tech. (1)

J. M. Lackner, W. Waldhauser, R. Ebner, A. Fian, G. Jakopic, G. Leising, and T. Schöberl, “Pulsed laser deposition of silicon containing carbon thin films,” Surf. Coat. Tech. 177–178, 360–364 (2004).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 PM picosecond Yb3+-fiber MOPA system, seeded by a gain-switched laser diode. Residual pump light in the power amplifier is stripped in the tapered section.
Fig. 2
Fig. 2 Average output power (excluding ASE) versus launched pump power of the final-stage power amplifier.
Fig. 3
Fig. 3 (a) Spectra (resolution = 0.01 nm) measured after the seed, after the pre-amplifier chain and at different average output power levels of the MOPA system. (b) Spectra (resolution = 0.5 nm) measured at different stages of the MOPA system when the pulse energy reaches 17.7 μJ. (c) Spectral evolution (resolution = 0.5 nm) when power and energy scaling are performed.
Fig. 4
Fig. 4 Temporal pulse profiles before and after amplification.

Metrics